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ABSTRACT 

As a result of frequent vehicular collisions to prestressed concrete (P/C) bridge 

structures around the state of Iowa, a proj ect was begun to investigate the capabilities of 

carbon fiber reinforced polymers (CFRP) as a method to repair and/or strengthen damaged 

bridges. A literature review was performed during the course of the project to identify other 

research related to carbon fiber repair/strengthening. There was a significant amount of 

literature involving reinforced concrete (RC), but very little concerning the use of CFRP to 
repair P/C bridges. 

A full-sized P/C beam was tested in the laboratory. Impact damage was simulated by 
removing a section of the bottom flange as well as cutting two prestressing strands, and the 
beams were repaired using a standard mortar and CFRP. The beam was subjected to cyclic 
loading simulating traffic before being statically tested to failure. The load testing showed 
that the CFRP increased the cracking load and restored a portion of lost flexural strength. 

Three bridges, southbound I-65 near Altoona, Iowa; westbound IA-34 near Osceola, 
Iowa; and westbound I-80 near De Soto, Iowa were damaged by impact of overheight 
vehicles. They were load tested in their damaged condition and then repaired using CFRP. 
The Altoona bridge was retested to observe the differences in strains and deflections, and 
some of the results showed minor improvement from the damaged to the repaired tests for 
certain heavier load cases. 

A design/application guide was developed based on the Osceola Bridge work for 
design using CFRP and to provide documentation for repair. This includes a working design 
software template as well as a design example of a previously designed repair. 
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1. INTRODUCTION 

1.1. Background 

The overall state of bridges in North America has slowly been deteriorating, since 

over 50% of the bridges in the United States were built before 1940 (1). Many of these 

bridges were originally designed for smaller vehicles. Of the approximately 300,000 bridges 
built before 1940, up to 42% are considered structurally deficient (2). These deficiencies are 
caused by several factors including increased loading, increased traffic volume, change in 

use, degradation, and design or construction problems (3). Another cause of structural 

deficiency is vehicular impact damage, and Shanafelt and Horn (4) found that approximately 
160 prestressed concrete (P/C) bridges are damaged due to vehicular impact per year. Some 
of these bridges need minimal repair, however others may require extensive repair that could 
even involve the replacement of damaged girders. 

In the past, several methods have been employed to repair and/or strengthen these old 
or damaged bridges. Three of these methods include external post tensioning cables, internal 
splicing of strands, and a steel jacket mechanically fastened to the damaged beam. All three 
methods can be successful in restoring some strength to the beams, but they are all time 
consuming repairs with significant material, labor, and. traffic control costs. 

More recently, carbon fiber has been employed as a structural repair method similar 
to the steel jacket. Carbon Fiber Reinforced Polymers (CFRP) have a high strength to weight 
ratio and are more pliable than steel resulting in an easier application. Over the last ten 
years, CFRP has been tested and documented on several reinforced concrete (R/C) members. 
Only recently has there been research on repairing damaged P/C beams and bridges with 
CFRP; whether CFRP can make up for the loss of prestressing is the real question. 

1.2. Objective and Scope 

The objective of this research was to determine the effectiveness of CFRP as a repair 
method for P/C members. A literature review, afull-scale laboratory beam test, and two field 

tests on actually damaged bridges were completed to obtain pertinent information and data. 
Some comparisons were also drawn from previous laboratory tests. 
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A literature review examining current and previous work in related areas of research 
was completed. Also included was a case study of certain bridge repairs obtained from the 

Iowa Department of Transportation. The review looked at previous tests mostly involving 

reinforced concrete or older repair procedures. 

A full scale Iowa DOT LXA-3 8 beam was brought into the laboratory where a 
composite 4 ft by 8 in. deck was added. The beam was instrumented, damaged, and repaired 
with CFRP. The damage was similar to vehicular damage that occurs in the field, and the 
repair was similar to a field repair, which relies on a patch material. Longitudinal CFRP was 
added to restore some flexural strength, and a CFRP transverse wrap was installed to help 

contain the patch and to increase the bond strength. Finally the beam was cyclically loaded 
for 2.2 million cycles and then loaded to failure in an ultimate static load test. The test setup 
is in Chapter 3, while the test procedure and results are presented in Chapters 4 and 5, 
respectively. 

Three impact damaged P/C bridges were also investigated. Bridges near Altoona, 
Osceola, and De Soto, Iowa that had been struck by overheight vehicles were subsequently 
strengthened and repaired using CFRP sheets and plates. The full-size beam specimens, 
bridge schematics, and test setups are discussed in Chapter 3. The installation of the patch 
and CFRP is presented in Chapter 4, and the results of the bridge tests are presented and 
summarized in Chapter 5. 

Chapter 6 consists of a brief summary of the research followed by the conclusions. 
Chapter 7 provides suggestions for further research. CFRP design techniques are presented 
in Appendix B along with photographic documentation of the application process. 
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2. LITERATURE REVIEW 

A literature review was conducted of topics similar in nature to the project at hand. 
Several sources of reference material were utilized for this review including the Iowa 
Department of Transportation, the Internet, and the Parks Library on the Iowa State 
University campus. 

2.1. Conventional Repair Methods 

Conventional repair methods for impact-damaged beams depend on the type and 
severity of the beam damage. The three current standard methods are again external cables, 
internal splices, and steel jackets. The external post tensioning cable method consists of 
running post-tensioning tendons along the length of the underside of the beam and through 
jacks that are fastened near the ends of the beam. The tendons are then stretched and 
released for the post-tensioning effect, but this method of repair leaves the new tendons 
exposed to the environment and invites corrosion damage to occur. 

The internal splice method involves splicing the ruptured tendons and restoring the 
original prestressing forces to them. After the tendons are restored to their old strength, a 
load is placed upon the bridge and the concrete is then repaired. When the concrete cures, 
the load is taken off the bridge. This method requires specialized chucks and a lot of time 
but can be used to repair several ruptured tendons. 

The final method, the steel jacket repair, is used most often in this area. A welded 
steel jacket is attached to the bottom flange of the damaged girder after the concrete 
patchwork has been completed. Bolts are fastened through the concrete to initially adhere 
the steel to the concrete; however, the steel jacket does not provide any prestressing forces. 
Epoxy is injected into the interface between the two materials to complete the adhesion. One 
main function of this repair is to contain the patched area and prevent any patch fallout. The 
steel jacket repair is the most common type of bridge repair in the Midwest. 

2.2. Carbon Fiber as a Repair Method 

In the last 10 years, advances in carbon fiber technology have been tremendous. 
Carbon fiber is being used for reinforcement rods, external repair sheets, and even entire 
bridge structures. Its light weight, high strength to weight ratio, and non-corrosive 
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properties have turned it into one of the preferred methods for repairing existing structures 
that have sustained impact damage, environmental damage, or are under-designed due to 

some change in use. A continued reduction in cost of CFRP composites, has also contributed 

to their popularity (5). 

2.2.1. Case study 

Some repair data was collected from the Iowa DOT involving different bridge repairs 
that had been performed. From this data, some comparisons were drawn between the steel 

jacket and CFRP repair costs. The data came from five bridges repaired in Iowa in recent 

years, four using the steel jacket and one using CFRP. Most of the bridges were from the 
Central Iowa area, but one was from the western side of the state, and these bridges all 

incurred damage due to vehicular impact and were in need of various repairs. Some of the 

bridge data used to draw comparisons are shown in Table 2.1, which includes bridge 
locations, dimensions, beams, damage amount, and the extent of the repair work. 

Table 2.1. Bridge locations and damage amounts. 
Bridge No. of 

beams 
repaired 

Length 
of repair 

Location Extent of 
Repair 
Needed 

Degree of 
Traffic 
Control 

Polk 
3498 (Steel) 

1 30 ft Euclid over I- 
235 

1 * Moderate 

Polk 
2095 (Steel) 

2 29 ft Beaver Road 
over I 80/35 

2* Extreme 

Woodbury 
597 (Steel) 

1 15.7 ft Local K25 
over I-29 

3 * Total 
Shutdown 
of K25 

Warren 599 
(Steel) 

1 13.5 ft Iowa 92 over 
I-35 

4* Little 

Polk 3400 
(CFRP) 

6 total, 1 
extensive 

6 ft, and 
80 ft

US-65 over 
US-6 

5* Little 

*See repair description below. 
1. This bridge required repair of two relatively large areas of concrete on the damaged 

beam. Steel plate assemblies were attached to the upper and bottom portion of the 
beam. It was then sealed using an epoxy gel and injected with an epoxy resin. The 
welded area was painted with zinc paint. The steel jacket continues higher up the 
web for bridge #1 and #4 than it does for bridge #2. 
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2. This bridge needed repair of two relatively large areas of concrete on the beam. Steel 
plate assemblies were attached to the upper and lower portion of the beams. It was 
sealed using an epoxy gel and injected with an epoxy resin. The welded area was 
painted with zinc paint. 

3. This bridge had incurred more damage than the others and required the repair of one 
beam and total replacement of another. This makes it hard to compare with the other 
repair jobs. 

4. This repair was approximately the same as repair #l. 
5. The concrete on this bridge was repaired using shallow repair and/or regular repair 

techniques. FRP plates were installed under the heavily damaged areas on one beam. 
CFRP was wrapped around damaged areas (8-15 ft.), and then down the entire length 
of the heavily damaged beam. 

Bids were taken separately for the f ve jobs. The costs and bids varied widely from 

company to company and bridge to bridge. Table 2.2 shows a summary of the bids with the 

winning bids in bold type. 

Table 2.2. Bids for different bridge repairs. 

Bridge Bidding 
Company 

Cost of Traffic 
Control 

Mobilization Beam 
Repair 

Polk 
3498 
(Steel) 

Shaw $5,200 ~2, 000 $24, 952 
Cramer $5,700 $5,500 $23,252 
Jensen $7,700 $5,000 $28,717 
Herberger $7,700 $5,000 $36,1 O l 

Polk 
2095 
Steel ( ) 

Cramer $17,061 X2,400 $5,500 

Jensen $17,477 $2,000 $15,000 

Woodbury 
597 
(Steel) 

Elk Horn $30,535 $12,000 X23,440 

Christensen $54,701 $15,000 $39,312 

Warren 
5 99 
(Steel) 

Shaw ~2, 920 $3,500 $12, 050 
Jensen $4, 720 $2, 5 00 $16, 900 
Cramer $2,920 $5,000 $14,375 
Herberger $4,220 $4,000 $23,400 

Polk 3 400 
(CFRP) 

Cramer $3,1 SO $S, 500 $34, 000 
Shaw $5,550 $3,500 $35,000 
BRB $4,000 $5,000 $61,000 
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Drawing direct comparisons from the steel jacket vs. the CFRP wrap is difficult 

because in the field most beams are not exactly alike, and if they are, the damage on one 

beam is going to be different from the damage on an identical beam. The length of the 
beams, the amount of damage, the damage location on the beam, the damage location over 

the roadway, the need for extensive traffic control, and the amount of time to do the repair, 

are all factors in figuring which method is the better. 

The first impression of the tables indicates that the CFRP method looks to be more 
expensive than the steel jacket method. This is a result of possibly three things: the length of 
the beam wrapped with CFRP was 75 feet, the wrapped beam also had its flexural strength 
enhanced by carbon fiber plates, and the CFRP process is very new. 

The cost to repair a 30 ft beam for the Polk 3498 bridge was $24,952, which included 
$15,312 for structural steel. This is approximately $826 per lineal foot. The Polk 3400 
bridge repair cost $34,000. With 80 feet being wrapped and ignoring the cost of the other 
five beams, the cost of this repair was $425 per lineal foot. This does not include the fact 
that the bridge repaired with CFRP was also flexurally strengthened. 

Unlike the bridges repaired with the steel jacket, the Polk 3400 bridge was flexurally 
enhanced with carbon fiber plates. The plates used for this job were 4 in. Sika S 1012 plates, 
which cost $44 per lineal foot. Four plates were placed side by side along the bottom with a 
length of 75 feet for a total of 300 lineal feet. This means that the plates alone cost $13,000. 
Subtract that from the $34,000 total, and the price is $262.50 per lineal foot for the CFRP 
wrap, which is less than 1 /3 of the cost of the steel jacket repair. 

As more companies continue to use the CFRP the cost should decrease as the 
competition increases. Hopefully more repairs can be documented to increase the data bank 
of bridge repair costs. This will make it easier to see the advantages of CFRP. 

2.3. Reinforced Concrete 

Numerous studies have been done involving CFRP strengthening of RC beams. 
Several have looked at shear and flexural enhancements for static as well as fatigue loading. 
Of the studies looked at, some involved strengthening using CFRP, and others looked at 
repair using CFRP. 
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2.3.1. Static Performance 

Shahawy and Beitelman (6) looked at static performance of T-beams strengthened 
with CFRP. They statically tested ten T-beams, nineteen feet long, with differing wrap 
patterns varying from fully wrapped to partially wrapped stems. The partially wrapped stems 
only had CFRP on the bottom of the stem and not on the sides, and the CFRP layers varied 
from 0 to 4 sheets. Two-point loading was used for the tests. From their static tests, ultimate 
flexural strength was shown to increase from 19% to 70% with a rate of increase beginning 
to diminish past two layers. They determined that concrete crushing was occurring before 
the full strength of more CFRP layers could be realized. 

It was also concluded that perhaps partial wrapping was not the best way to wrap the 
beams. When a CFRP layer was only placed on the bottom of the stem, horizontal cracks 
developed along the level of the reinforcing steel causing delamination of the concrete. The 
fully wrapped beams were found to be more ductile than the partially wrapped beams, which 
seems odd and does not seem to follow what most other researchers are saying. 

Copozucca and Cerri (7) looked at the behavior of RC beam models strengthened 
after cracking with CFRP. After running single point bending tests on different beams with 
one and two layers of CFRP, they concluded that models with more layers of CFRP will have 
more strength but less ductility then those with fewer or no layers of CFRP. This could lead 
to undesirable brittle failures. With only one layer of CFRP, a good level of ductility was 
shown from their Moment-Curvature plots. 

2.3.1.1. Shear 

Chaallal et al. (8) performed tests looking into shear strengthening with CFRP fabric. 
They tested fourteen 20 ft long RC T-girders with various stirrup spacings a total of twenty-
eight times to determine the effect of CFRP shear reinforcement. They drew several 
conclusions from their tests. The failure mode for the unwrapped beams was determined to 
be concrete crushing. For the wrapped beams the failure mode was usually fabric 
delamination near the support because of sliding along the line of the shear crack. The 
concrete in the wrapped beams appeared to have undergone significant deformations past its 
ultimate capacity due to the wrap confinement. 
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The researchers stated that for wrapped beams the maximum shear force generally 

increased with the number of layers of CFRP, but the shear forces were not a function of the 

number of layers. The optimum number of layers depended on the steel reinforcement; the 

shear reinforcement also increased the ductility of the members. They also claim that a 

certain combination of CFRP layers and steel stirrups exists that would create a maa~imum 

increase in ductility. Norris et al. (9) concluded that certain combination of fibers and 

orientations could provide a ductile yielding response similar to steel plate retrofits that is 
more satisfactory for concrete design. Chaallal et al. (10) gives a design procedure for shear 

strengthening using CFRP fabrics including an example problem. 

Tann et al. (11) presented a design approach for externally bonded shear using FRP 

composites as well as a major literature review of previous research. This literature review 

documented growths in shear design technology and included names such as Sharif et al.(12), 
Chajes et al.(13), Sato et al.(14), Triantaffilou (15), and Swamy et al. (16). The review 
spanned the years from 1993-2000. 

2.3.2. Fatigue Performance 

Shahawy and Beitelman (6) also looked at fatigue performance of strengthened T-
beams. Six beams, nineteen feet long, were cyclically loaded for up to 3,215,000 cycles. 
There was one control beam, two beams had 2 layers of CFRP with the stem fully wrapped 
and two beams had 3 layers of CFRP with the stem fully wrapped. A sixth beam was 
damaged in fatigue for 150,000 cycles before 2 layers of CFRP were added to its stem. 

The damaged beam that had been rehabilitated showed improved fatigue life similar 
to the undamaged beams that were wrapped before they were loaded. This led to the 
conclusion that severely cracked beams in the field could be successfully repaired with 
CFRP. From the tests it was also concluded that the stiffness of all of the wrapped beams 
was greater than the unwrapped control beam. Finally the testers concluded that full 
wrapping of beams with CFRP is an effective method of rehabilitating and strengthening 
fatigue critical structures. 

Barnes and Mays (17) conducted some fatigue tests on reinforced concrete beams 
with CFRP plates attached. Five identical beams were tested in fatigue, two original and 3 

strengthened beams. Three different aspects of loading were addressed. These aspects 
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included the following: apply the same loads to plated and unplated beams, apply loads that 

would give the same stress range in the rebar to each, or apply the same percentage of 

ultimate load capacity to both beams. All three of these aspects were addressed in this single 

test. 

The final results of this experiment showed that a plated beam had significantly 

longer fatigue life than an unplated beam with the same loading. A plated beam also has a 

longer fatigue life than an unplated beam when the rebar is loaded to identical stress ranges. 
Finally it was noted that an unplated beam had a longer fatigue life than a plated beam when 
each was loaded to the same percentage of the predicted ultimate strength. 

2.3.3. Field Testing 

Stallings et al. (18) tested a bridge in Alabama that had been damaged and repaired 
with CFRP. The bridge was a 4 girder, 7 span bridge with 34 ft spans. The bridge had not 
been impacted but needed to be strengthened due to additional load requirements, since it had 
developed flexural cracks near the midpoint of several spans. The plans called for FRP 
strengthening of one span with CFRP plates along the bottom of the flanges for flexural 
strengthening and GFRP along the sides of the flanges to prevent flexural cracks from 
opening further. The intent of the design was to increase the bending moment 20% so the 
needed CFRP was calculated based on this requirement. 

The girders were repaired according to the recommendations provided by the 
manufacturer. These recommendations included grinding and sandblasting the concrete, 
creating a smooth surface on the plates and correctly mixing and applying the epoxy as well 
as using rollers to create a better bond. Static and dynamic load tests were done before and 
after the repair using ALDOT trucks, with decreases in reinforcement stresses for the static 
tests ranging from 4% to 12%. Decreases in mid-span deflection for the static tests ranged 
from 2% to 12%. For the dynamic tests, reinforcement stresses decreased from 4% to 9%, 
and mid-span deflection decreased from 7% to 12%. 

The testers concluded that application of the CFRP was a simple, straightforward 
process with little or no need for special equipment or tools. They also found that deflections 
and reinforcement stresses in the girders strengthened with GFRP on the sides were 
noticeably less than for the girder without the GFRP. This led them to conclude that cheaper 
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GFRP plates may be added to the sides of girders to increase stiffness while the more 

expensive CFRP plates could be added to the bottom flanges to increase load capacity. 

Masoud and Soudki (19) investigated the serviceability of corroded RC beams that 

had been strengthened with CFRP sheets. They tested 8 strengthened beams that had been 

corroded with a chloride solution, and they concluded that the CFRP was capable of restoring 

strength lost due to corrosion. Their results also showed that longitudinal crack widths were 

reduced about 20% from unstrengthened to strengthened beams, and mid-span deflection was 
also reduced an average of 33% for strengthened beams. 

Watson (20) reported on several aspects of CFRP uses including column wraps, 
corrosion inhibition, and beam strengthening, including laboratory and field beams. One 
investigation included a bridge in South Carolina that had been significantly damaged by 
vehicular impact. The state had to choose the best possible repair option. It was determined 
that the replacement of the beam would have cost upwards of $250,000. Finally a CFRP 
strengthening option was designed and approved that only took 3 weeks, saved the state over 
$150,000, as well as minimized traffic disruption. 

Many other people have conducted tests on RC bridges strengthened with either 
CFRP and/or GFRP. Some of the more recent include Nanni et al. (21), Brena et al. (22), 
Kachlakev (23), and Keble et al. (24). There are also up to hundreds more not mentioned. 

2.4. Prestressed Concrete 

There have been relatively few papers published concerning CFRP and prestressed 
concrete. Klaiber et al. (25) tested a P/C beam with 3 of the 12 strands cut to simulate impact 
damage. The beam was repaired using a corrosion inhibitor followed by a mortar patch. The 
beam was fitted with CFRP plates for flexural strengthening. A GFRP wrap was also put on 
at the end of the plates to prevent debonding and near the middle to prevent patch fallout and 
restrain peeling as a result of flexural cracks in the maximum moment region. Following an 
ultimate load test, it was concluded that the CFRP and GFRP contributed to a gain of 17% 
from the unstrengthened to the strengthened beam. They concluded that the repair was 
effective in restoring stiffness and providing strength increases in the damaged beams. 

Russo et al. (26) investigated the effects of overheight vehicle damage to prestressed 
concrete I-beam bridges. The testing involved two bridges, one (westbound lanes) that had 
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two beams damaged by an overheight vehicle and a second (eastbound lanes) nearly identical 

bridge that was used as a basis for the load testing. Laboratory beam tests and analytical 

modeling were included in the investigation as well. Service tests, which consisted of forty-

three static load configurations, were performed on the undamaged (EB), damaged (WB), 

and repaired (WB) bridges to observe any differences in load distribution. The repair 
consisted of beam replacement. The two damaged beams were then taken to a laboratory 
where further tests were performed. One of the damaged beams was repaired using CFRP 
while the other was used as a basis for the experiment. 

The results of the testing showed that the damaged bridge behaved differently from 
the undamaged and repaired bridges. The redistribution of loads away from the damaged 
beams was evident in the damaged bridge, while the undamaged and repaired bridges 
behaved almost identically. The analytical modeling showed that the moments in the 
damaged beams for critical load locations were significantly less than the moments expected 
from AASHTO equations, showing plenty of extra strength. The laboratory beam tests 
showed that the damaged beam had sufficient strength to have remained in service. The 
beam that was strengthened with CFRP attained a capacity 12% greater than the basis beam. 

2.5. Beam Design Using CFRP 

Norris et al. (9) presented design guidelines for RC beams strengthened in flexure and 
shear with FRP plates or fabrics based on the Canadian Concrete Standard. Their 
presentation of flexural design includes the flow chart shown in Figure 2.1 devised for ease 
in designing. A design example problem was also included to show the steps for designing a 
beam with CFRP. 

The MBrace company (27) that produces many of the CFRP materials used as well as 
other products also has created some design specifications for its CFRP products. Their 
design approach includes investigating several possible failure modes and limit states. Like 
Norris et al. (9) they obtain an initial area of FRP and modify it based on a comprehensive 
analysis of the strength, ductility, and serviceability of the member. This requires an iterative 
design so the company also provides a simple computer program for ease in design. 

Kelley et al. (28) wrote an article meant to emphasize and discuss key issues related 
to the methodology for the design of concrete structures using CFRP. The issues were based 
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on guidelines being considered by ACI Committee 440 F. Some of the issues that Kelley et 

al. wanted to address were minimum required pre-strengthened strength criterion, limits on 

strength enhancement, appropriate cp factors, and the condition of the concrete substrate. 

For the first issue dealing with the pre-strengthened strength of the members, the 

authors mentioned the potential for failure due to uncontrollable events, with the number one 

risk being damage due to fire. The high temperatures involved in a fire would cause the 

adhesive to flow plastically, which would cause a loss in load transfer to the FRP. Thus it 

was contended that the unstrengthened structure be capable of resisting service loads without 

the steel reinforcement yielding. It was also recommended that the ultimate strength of the 

unstrengthened system exceed the service loads by a safety factor of 1.2. This safety factor 

was to account for 4 things, unintended load, understrength of material, unintended 

construction influences, and unintended environmental influences. 

The second issue discussed dealt with the lack of ductility of the CFRP. CFRP is not 
a ductile material as it exhibits nearly linear stress-strain behavior to failure in tension, but 

R/C members strengthened with CFRP can exhibit ductile behavior. In this article, this 

phenomenon was referred to as pseudo-ductile behavior. In order to get the desired pseudo-

ductile behavior, the amount of CFRP must be limited. If a member were strengthened with 

so much CFRP that the reinforcing steel fractures when only a fraction of the CFRP strength 

is used, the member would have little ductility and no warning of impending failure. The 

designer must understand the behavior of the member prior to and after strengthening. The 

main emphasis of the ductility section was that the ratio of CFRP to steel reinforcement be 

one that is favorable to promote ductile behavior near the ultimate loads. 

The final area of major discussion involved cp factors. The claim was that there needs 

to be some standardized test data to develop cp factors that mean anything. Assigning 

specific values to individual cp factors is an ambiguous task without the proper 

comprehensive study. With all of the variables currently involved such as different 

manufacturers, different material and performance properties, and different installation 
procedures, it is difficult to assign one factor to all models. The proposed equation for cpFRP 
was the following: 

~QFRP - ~QMAT * ~QPROC * C\~PCURE + ~QLOC~~2 ~ * <QDEGR• 
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cp~T accounts for the deviation and level of uncertainty of the material properties; 

~PPRoc accounts for variation due to processing methods; 

~pcu~ accounts for variation in properties due to degree of cure achieved; 

~pLoc accounts for uncertainty due to the location of processing; 

cpDEGR accounts for material property changes due to environmental effects. 

The values of all of these factors would range between 0.3 and 1.0. With a 

continuing influx of data, these factors should be refined over time and standardized. 

Pouliot et al. (29) developed design charts to improve the designability aspect of 

CFRP for design and repairs. These charts were meant to ease the calculation process which 

in turn increases the speed of the decision making process during preliminary design. The 

procedure developed for producing the design charts was also discussed at great length. A 

design example was included as well. 



www.manaraa.com

14 

Verify postfailure criteria 
of unstrengthened 
structure 

FRP not 
recommended 

Select bF~ and assume tF~. 

Assume E~ = EAU = 0.003 5 

Compute al and (31

Assume ES >_ Ey
and E S >_ Ey

Compute c 

Compute ES

Compute c 
Wlth ES < EY 
and E S >_ Ev

Compute ES

1 

No yielding o f 
steel, reduce 
tFRP 

Increase tF~ 

Compute Mr

Compute tF~ 

Compute Curvature 
(P — Ecu ~ C 

Compute call 

Compute i 

1 

Premature failure 
may occur: 
increase anchorage 
length or provide 
additional 
anchorage system 

END DESIGN 

Figure 2.1. Flexural design flow chart. 
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3. TESTING PROGRAM 

There were four tests involved in the testing program including one laboratory beam 

and three field bridges. The tests included service tests, fatigue tests, and ultimate load tests. 

The test set-ups and procedures of all the tests are described herein. 

3.1. Prestressed Beam 

The prestressed concrete beam analyzed in the laboratory segment of this project was 

an Iowa DOT LXA-3 8 beam. Humboldt Concrete Products of Humboldt, Iowa, provided the 

beam. The beam measured 3 9 ft — 4 in. long from end to end, and it weighed approximately 

29,000 lbs. Figure 3.1 shows a cross sectional view of the beam with dimensions. Figure 3.2 

shows the strand configuration, with 12 strands on the bottom and 2 strands on the top. 
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Figure 3.1. Cross-section of LXA-38 P/C beam. 
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Figure 3.2. Strand Configuration of LXA-3 8 P/C beam. 

3.1.1. Cast-in-place composite slab 

A composite slab was cast in the lab to develop the full tensile strength of the CFRP 

repair material. The P/C beam with the composite slab more closely resembled a typical 

bridge in the field. The slab size that was chosen for this beam was 4 feet wide, spanning the 

length of the beam, and 8 inches thick; these dimensions were chosen after a literature survey 

of several DOT projects throughout Iowa. The maximum allowable spacing for this size of 

beam was 7 ft — 6 in, although most bridges in the state do not typically use this maximum 

allowed girder spacing. Using the AASHTO specifications, the effective slab width of the 

specimen was calculated to be 48 in. This was calculated as a function of the effective beam 

span, the slab depth (slab stiffness), and the beam spacing. The actual slab width was used as 

the effective slab width when calculating section properties of the composite cross-section. 
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Due to the instability of a larger slab, the 48 in. slab was decided upon even though it 
was somewhat conservative. The moment of inertia for a composite beam with a 7 ft — 6 in. 

wide slab is 22% larger than an identical beam with a 4 ft wide slab, which caused measured 
strain and deflection values to be slightly higher. Steel stirrups protruding from the original 

P/C beam, and the deliberate scoring of the concrete surface supplied the composite action of 
the beam and slab. The CIP slab is shown in Figure 3.3. 

48" 

32" 

LXA-38 Be 

17" 

Figure 3.3. Dimensions of CIP concrete slab. 

3.1.1.1. Formwork Detail 

Wooden formwork for the slab was constructed in the lab using 2x4 and 3/ 4 in. 
plywood. The 2x4 were used for the legs and transverse framework under the plywood. The 
legs were approximately 32 in. high. The legs were different lengths to conform to the 
natural 3/ 4 in. camber of the beam. The transverse braces were spaced every 16 in. to prevent 
any deflection of the plywood while pouring. Concrete screws were installed to anchor the 
formwork to the beam; a cross sectional view of the formwork is shown in Figure 3.4. Only 

a few screws were used to prevent any unnecessary holes or accidents, and all of the plywood 
was coated with form oil before the steel reinforcement was set in place. 
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For the purposes of moving and loading the beam, 8 holes needed to be made in the 

slab, 4 on each side at particular spots. The easiest way to get the holes in the slab was to 

pour the slab with some sort of cylinders all ready in place, since drilling after the pour 

would require much more labor time and cause a bigger mess. The best cylinders available 

were 4 in. diameter PVC pipe sections, long enough to pass through the slab. Threaded rods, 

1/2 in. in diameter, were used to hold the pipe sections in place during the pour. The rods 

were drilled through the plywood and held tightly on the top by a small wooden block. The 

wooden block also prevented any concrete from entering the inside of the PVC pipe. As with 

the plywood, the pipes had to be covered with form oil, and they were removed after the pour 

by twisting them out. 
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Figure 3.4. Formwork cross-section for R/C slab. 

3.1.1.2. Slab Reinforcement 

The R/C slab was poured according to AASHTO LRFD specifications, which called 
for #4 bars placed every 12 in. in both directions, longitudinal and transverse. The steel 

reinforcement was Grade 40 deformed bars, with shrinkage and temperature restraints being 
the controlling factors in the slab design. The reinforcement was placed on 6 in. high chairs. 
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The Iowa DOT provided the concrete, which was a standard mix, with 4,000-psi 

design strength. Standard industry practice was used for the pour, including a vibrator that 

was used to evenly distribute the mixture. Steel trowels were used to finish the top of the 

slab. Plastic tarps were used to cover the concrete for curing, along with burlap blankets to 

keep in the moisture. 

3.1.2. Fatigue Conditions 

The beam was subjected to cyclic loading to simulate actual highway loading. The 

setup for the fatigue portion of the test is shown in Figure 3.14. The lab setup required to 

accommodate the beam consisted of a large preexisting steel frame anchored to the lab floor. 
The frame consisted of two W-shaped steel beams about 25 feet long that ran parallel to each 
other seven feet apart, with other W-shaped beams providing bracing. The lab was not big 
enough to allow the P/C beam to be placed parallel or perpendicular to the frame. The only 
way the beam would fit was to skew it diagonally to the frame. This allowed for j ust enough 
room to walk around one end of the beam in order to maintain the functional capacity of the 
lab, although one end of the beam rested on the tie down floor and the other on the on grade 
slab. 

Since the P/C beam had to be skewed, the actuators had to be skewed as well. Two 
hydraulic actuators were used to load the P/C beam; the actuators each had a 5 5 kip capacity. 
The actuators were attached to the frame using several large C-clamps. They were also 
braced in several directions, and welded to the frame to prevent them from moving from side 
to side. Small movements of the actuators did not appear to have a significant effect on the 
fatigue loading. 

A cross-sectional view of the fatigue test is provided in Figure 3.15. A 10 ft steel 
spreader beam was used because the actuators were only 4 feet apart. It was not attached to 
the actuators to prevent any potential binding, and the spreader beam was supported by the 
pin and roller on top of the beam. The weight of the actuators kept the spreader from 
moving. During the fatigue testing, a minimum load of 2 kips was applied at all times to 
prevent any bouncing or movement of the spreader beam. 



www.manaraa.com

20 

Figure 3.5. Fatigue loading setup. 
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Figure 3.6. Cross section of fatigue loading setup. 
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3.1.3. Instrumentation 

Instrumentation consisted of three different types of gages. Gages were placed on the 

concrete, the steel reinforcement and the CFRP. All of the gages were then fed into the data 

aquisition system, DAS. 

3.1.3.1. Concrete gages 

Six 2.4-inch type F-2400 concrete resistance gages were originally placed on the 

beam. Five gages were placed on top of the CIP slab, and one was placed on the bottom of 

the beam. Three of the gages were laid across the center of the slab at mid-span 18" apart. 

Two of the gages were laid on center, 56" from each end of the beam. These locations 

approximately corresponded to the termination points of the longitudinal CFRP. The one 

gage that was located on the beam was on the bottom flange at the center of the span. Atop 

view of the concrete gages is shown in Figure 3.7. 

C1 C2-C4 
Concrete Gages ~' ~j ~ 6„ 

18' 
18" 

CS 

55" 
~~ 

23 6" 
472" 

SS" 
~~ 

Figure 3.7. Concrete gage locations, plan view. 

3.1.3.2. Prestressed gages 

24" 

Eight steel resistance gages, type CEA-06-043UW-120, were placed on the 

prestressed strands after the concrete had been removed from the center of the beam. These 
gages were used to measure the prestressing forces in the beam. Two gages were placed on 
each strand near one end of the damage, which allowed the other end of the strands to be cut 

with an acetylene torch without damaging the strain gages. These gages are shown in Figure 

3.8. 
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3.1.3.3. CFR1' gages 

A total of nine gages were positioned on the CFRP, six on the longitudinal CFRP, and 

three on the transverse wrap. Seven of the gages were placed symmetrically down the center 

of the CFRP, with the center gage actually on the wrap. The other two gages were placed on 

opposite sides of the bottom flange in the center of the beam. The CFRP gage layout can be 

seen in Figure 3.9, and an overall view of the setup and gage plans is shown in Figure 3.10 
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Figure 3.8. Prestressed gage locations. 
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Figure 3.9. CFRP Gage locations. 

Damage was inflicted to the beam to simulate a truck striking the beam as if it were a 
member in a bridge. The damage included removal of a section of concrete, and the cutting 

of two of the prestressing steel strands. 
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3.1.4.1. Removal of Concrete 

A 3-foot section of concrete was removed from the center of the bottom of the P/C 
beam. The section was 4 inches deep measuring from the bottom. Four inches was chosen 

because that left the bottom four strands showing, while the next layer of four strands was 
still encased in concrete. The four inches taken out also allowed just enough room to be able 
to patch the damaged area. A large chipping hammer was used for the removal of the 
concrete, but significant care had to be taken so as not to sever any of the prestressing 

strands. The damaged section is shown in Figure 3.11, and a photograph of the damaged 
area is shown in Figure 3.12. 
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Figure 3.10. Overall gage locations. 
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Figure 3.12. P/C beam with concrete removed. 

3.1.4.2. Cutting of Prestressing Strand 

Two of the twelve prestressing strands were cut, strands 3 and 4 in the diagram. This 

constituted 17% of the total area of steel. Once the concrete was removed, 2 strain gages 

were placed on each strand. The strands were then cut one by one using an acetylene torch. 

They were heated slowly to induce a slow severing, since violent kickbacks would not 

enhance the quality of the data. The strain in the strands was measured with no load on the 

beam three different times, before either strand was cut, after one strand was cut, and after 

both strands were cut. A photograph of the severed strands is shown in Figure 3.13. 

3.1.4.3. Loading and Degradation 

The P/C beam was loaded with a load range from 2 to 29 kips per actuator. The 

maximum moment induced was approximately 35% of the total moment capacity of the 

beam. The rate of loading was 0.70 cycles per second, and the loading was applied for 2.5 

million cycles. Service load tests were run frequently, about 20 times throughout the cycling 

to identify any change in stiffness or strength. The CFRP was also visually inspected 

throughout the cycling to observe potential debonding. Table 3.2. lists the number of cycles 

carried out prior to each service test. Each degradation test involved setting the actuators so 

there were 2 kips total on the beam, then increasing the load to 58 kips while taking readings 

at 2 kip intervals. 
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Figure 3.13. Strands after severing. 

Other service load tests were also performed throughout the damage and repair 

process. A service test was performed after each of the following events: before any damage 

was done, after the concrete was removed, after the strands were cut, and after the 

longitudinal and transverse CFRP was applied. These tests were run from 0 to 25 total kips. 

3.1.4.4. Ultimate Test Setup 

Once repaired, the P/C was tested to failure to determine the ultimate load. The 

actuators used for the fatigue test did not have the capacity to completely fail the beam. 

Since the beam was skewed, it was also not possible to test through the tie down floor, thus 

the beam had to be lifted and moved to another part of the lab so the testing holes in the beam 

would line up with the holes in the floor. 

The P/C beam was tested in four-point bending as shown in Figure 3.14. The 

abutments were each 2 W21 x 83 sections that had been welded together. The webs of the 

abutments had also been stiffened so as to take the tremendous concentrated loads. Bearing 

pads were placed on the abutments under the ends of the beam. 
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Table 3.1. Number of cycles at each degradation test. 

Number of Test Number of Cycles Number of Test Number of Cycles 

1 0 11 899,430 

2 64,960 12 958,140 

3 115,500 13 1,092,200 

4 176,180 14 1,189,610 

5 288,060 15 1,361,150 

6 330,170 16 1,526,420 

7 384,740 17 1,641,800 

8 441,240 18 1,769,340 

9 694,600 19 2,049,910 

10 786,780 Ultimate 2,528,930 
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1 ~ 1 

1 
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~ 14' — 10" ~ 9' — 0" 
3 8' — 8" 

~ 14' — 10" ~ 
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Figure 3.14. Side view of loading arrangement. 
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Load was applied using two hydraulic loading cylinders. The cylinders were 
connected to a hand pump via a splitting connector, used to keep a balance of load between 
the two loading cylinders. Tie down bars were secured to the floor, with structural tubing 
securely attached to the top of the bars. The load cylinders applied the load against tube, 
which loaded the beam. Load cells, neoprene pads, and steel plates were placed between the 
load cylinders and the beam, with the pads and plates used to lessen the concentrated loads. 
A cross section of the load set up is shown in Figure 3.1 S. 

Bracing Tube 

Hydraulic Cylinder 

Load Cell 

LXA 3 8 Beam 

Abutment 

Steel Plates 

 Bearing Pad 

RlC Slab 

Figure 3.15. Ultimate load test setup. 

Post Tensioned Rods 

Bearing Pad 



www.manaraa.com

28 

3.2. Bridge Testing Program 

The field portion of the program involved three bridges around the state of Iowa that 
had been damaged by overheight vehicles. The bridges were near Altoona, Osceola, and De 

Soto, Iowa. Each bridge was repaired using CFRP. Table 3.2 lists the bridge numbers and 

their location. 

Table 3.2. Bridge locations and maintenance numbers. 

Approximate Bridge location Bridge number 

Bridge 1 Altoona, Iowa 7783.IL065 

Bridge 2 Osceola, Iowa 2015.2L034 

Bridge 3 De Soto, Iowa 2510.I.080 

3.2.1. Altoona Bridge 

Bridge 1 had six girders that all carried 4 spans. The 4 spans included a 36' approach 
span on the north side, a 46' exit span on the south side, and two 96.5' main spans that carry 
traffic south along IA Highway 65 over IA Highway 6, which runs almost perpendicular. 

The bridge consists of two travel lanes, a large shoulder lane on the outside, and a smaller 
shoulder on the inside of the roadway. An overall view of the bridge is shown in Figure 
3.16, a schematic view is shown in Figure 3.17, and a cross section is shown in Figure 3.18. 

Figure 3.16. Overall view of Altoona Bridge looking east. 
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Figure 3.17. Dimensions of Altoona Bridge. 
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Figure 3.18. Cross section of Altoona Bridge. 

3.2.1.1. Description of Damage 

An overheight semi-tractor trailer being driven on Highway 6 from west to east 

impacted the west most girder of the bridge, damaging it slightly. This initial impact caused 

the truck's load to retract and then rebound back into the second girder. This impact caused 

greater damage, to the extent of two strands being severed and some concrete loss. The truck 

continued traveling under the bridge while the load scraped and superficially damaged the 

concrete of the remaining 4 girders. Amore extensive damage report is located in Appendix 

B. Beam damage can be seen in the photographs of Figures 3.19 through 3.21. 

3.2.1.2. Load Test Set up 

The load test took two days to complete, with the first day consisting of instrumenting 

the bridge with strain gages. Displacement transducers were installed at midspan of span 2 

on the second day, prior to the load testing. The strain gages were then left in place while the 

bridge was repaired, but the displacement transducers were removed. Following the repair of 

the bridge, new strain gages were installed where they had been torn down and the test was 

repeated. 
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Figure 3.19. Photograph of the damage to Beam 2 in the Altoona Bridge. 

Figure 3.20. Photograph of the damage to Beam 1 in the Altoona Bridge. 
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Figure 3.21. Photograph of the damage to Beam 5 in the Altoona Bridge. 

3.2.1.2.1 Instrumentation 

Concrete strain gages were placed in several different positions on each of the 6 

girders. The gages were glued according to the methods described in the gage manual. The 

gages were covered with enamel, thin rubber strips, and aluminum tape (see Figure 3.22) to 

protect them from the elements, as they would remain on the bridge for several months. 

Figure 3.22. Photograph of weather protecting tape over a strain gage on the Altoona bridge. 
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Figure 3.23. Location of strain gages and deflection transducers on the Altoona Bridge. 
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The strain gage and deflection schematic is shown in Figure 3.23. Six strain gages 
where placed on girders 1, 2, and 3 . These were the girders that surrounded the most heavily 
damaged area, Girder 2. The eastern three girders, girders, 4, S, and 6, each had two gages. 

For girders 1, 2, and 3, one gage was placed on the side of the bottom flange at mid-
span of span 1, the south span. Two gages were placed at mid-span of span 2, with one gage 
placed on the side of the top flange, and one on the side of the bottom flange. Two more 
gages were placed near the north pier of span 2 in the same configuration that was just 
mentioned, which was done so the damaged area would have gages on either side of it. 
Finally, 1 more gage was placed on the side of the bottom flange at mid-span of span 3. 

Girders 4, 5, and 6, had two gages each. The gages were on the side of the top flange 
and the side of the bottom flange and were set at mid-span of span 2. These gages made it 
possible to find the centroids of girders 4, 5, and 6. Deflections were measured on all of the 
beams at the mid-span of span 2 with celesco type string potentiometer transducers. 

3.2.1.2.2 Load Trucks 

The trucks used for the static and dynamic load tests were Standard DOT 3-ale 
dump trucks filled with sand. The weights and dimensions for each of the four trucks can be 
found in Table 3.4, with the accompanying figure (Figure 3.24). Dimensions are listed to the 
nearest one tenth of a foot. Trucks 1 and 2 were used for loading during the original test 
while trucks 3 and 4 refer to the trucks from the second test. The center of gravity of the 
trucks was taken to be at the center of the rear tandem axle. 

F1 F2 

S2 
S1 

R2 Rl 

Figure 3.24. Dimensions of the trucks used in the Altoona bridge test. (see Table 3.3) 
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Table 3.3. Weights and dimensions of trucks. 

Truck Truck 
Number 

Weight 
(lbs.) 

FI
(ft) 

F2
(ft) 

R1
(ft) 

R2 
(ft) 

S1
(ft) 

S2 
(ft) 

1 A29244 53,800 8.0 7.0 8.0 6.0 18.5 14.5 
2 A29532 48,400 8.0 7.0 8.0 6.0 18.5 14.5 
3 A29244 46,180 8.0 7.0 8.0 6.0 18.5 14.5 
4 A25857 47,220 8.0 7.0 8.0 6.0 19.0 15.0 

3.2.1.3. Static and Dynamic Test Procedures 

Two tests were conducted on this bridge; before and after repair. Both a static test 

and a dynamic test were conducted. The dynamic test was performed to provide a better 

indication of the bridge continuity. 

3.2.1.3.1 Static Test Procedure 

A static load test was conducted using various load cases. The purpose was to get 

reliable transverse strain and deflection data. The static load tests were performed in the 

midst of moving traffic. One or two lanes (including the shoulder as a lane) were blocked off 

at a time, while an open lane allowed traffic to continue to flow over the bridge. Although 

traffic continued to flow, all test readings were taken when the bridge was free of traffic. 

The strain gages were zeroed when there was no traffic or trucks on the bridge or the 

approach spans. The trucks were positioned in the marked positions corresponding to the 32 

different load cases. Strain and deflection data were taken for a series of approximately five 

of the load cases in series, and then the gages were zeroed again. All of the measurements 

were taken when there was no traffic on or near the bridge; the procedure was repeated until 

data had been collected for all load cases. The procedure for the static tests remained 

consistent from the damaged bridge test to the repaired bridge test. 

3.2.1.3.2 Load Cases 

There were 32 different load cases used for the static portion of the test (see Table 3.4 

and Figure 3.24) involving one or two trucks. The positions were chosen to produce positive 

and negative moment data. For the cases that involved two trucks, trucks were either placed 

side-by-side in adjacent lanes, front to back in the same lane, or in the same lane at different 
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points of the spans (i.e. positions 1 & 3, 2 & 3, etc.). Photos of the trucks in side-by-side and 

front to back positions are shown in Figure 3.26 and 3.27. The load cases are listed in Table 

3.5, and the lanes and dimensions of the cross-section are shown in Figure 3.25. 

Table 3.4. Listing of load cases. 

Load Case Lanes) Trucks) Spans) + Location 
1 1 1 1 1/2 
2 1 1 2 1/4 
3 1 1 2 1/2 
4 1 1 2 3/4 
5 1 1 3 1/2 
6 2 1 1 1/2 
7 2 1 2 1/4 
8 2 1 2 1/2 
9 2 1 2 3/4 

10 2 1 3 1/2 
11 1 &2 1 &2 1 1/2 
12 1 &2 1 &2 2 1/4 
13 1&2 1&2 2 1/2 
14 1 &2 1 &2 2 3/4 
15 1 &2 1 &2 3 1/2 
16 1 1 &2 1 &2 1/2 
17 1 1&2 1&3 1/2 
18 1 1 &2 2&3 1/2 
19 1 1&2 2&2 1/2 
20 2 1&2 1&2 1/2 
21 2 1 &2 1 &3 1/2 
22 2 1 &2 2&3 1/2 
23 2 1 &2 2&2 1/2 
24 3 1 1 1 /2 
25 3 1 2 1/4 
26 3 1 2 1/2 
27 3 1 2 3/4 
28 3 1 3 1/2 
29 3 1&2 1&2 1/2 
30 3 1&2 1&3 1/2 
31 3 1&2 2&3 1/2 
32 3 1 &2 2&2 1/2 
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Figure 3.26. Photograph of trucks in Lane 1 and 2 in the Altoona Bridge test. 
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Figure 3.27. Photograph of trucks in Lane 3 in the Altoona Bridge test. 

3.2.1.3.3 Dynamic Procedure 

The same strain gage and deflection schematic from the static procedure was used for 

the dynamic procedure. Several trials were measured at different speeds, with one truck 

traversing the bridge at a time. The different speeds included several crawl runs 
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(approximately 3 -8 mph) and some faster runs (approximately 3 0-3 5 mph), with several 

ambient vehicles traveling highway speeds (65-70 mph) also measured. The dynamic tests 

helped to check the continuity of the gages as loads crossed the bridge, as well as confirming 

the data from the static tests. 

3.2.2. Osceola Bridge 

The second bridge tested, Bridge 2, has eight prestressed concrete beams and carries 

traffic west on Highway 34 over Interstate 35 north and southbound near Osceola, Iowa. The 

bridge is a two-lane bridge, both westbound, and includes two main spans and two approach 

spans (see photo in Figure 3.28). The approach span from the east is 48'- 7" long. The next 

span, which carries traffic over northbound I-35, is 64'- 7" long and is the span that sustained 

the impact damage. The span that carries traffic over southbound I-35 is 56'- 3" long, and 

the exit span is 48'- 7" long. A schematic of the bridge can be seen in Figure 3.29, and a 

cross section of the bridge is shown in Figure 3.30. 

Figure 3.28. Overall view of the Osceola Bridge looking southwest. 
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Figure 3.29. Dimensions of Osceola Bridge. 
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Figure 3.30. Cross section of Osceola Bridge. 

3.2.2.1. Description of Damage 

The bridge incurred some damage due to an overheight piece of machinery being 

transported on asemi-tractor trailer. The vehicle was traveling northbound on I-3 5 . The 

equipment cleared the souther~lmost six beams, but due to the grade of the highway, the two 

beams on the north side were struck. The 2nd beam sustained some concrete spalling but no 

steel damage. The 1st beam incurred the most damage with significant concrete spalling as 

well as one prestressed steel tendon being severed. The diaphragm between the 1St and 2nd 

girders near the impacted area also lost some concrete. Figures 3.31 and 3.32 show two of the 

damaged areas. Appendix B offers a more complete damage report. 

3.2.2.2 Instrumentation 

Instead of using regular resistance type strain gages, a newer testing system was used. 

The new system called BDI-STS, Structural Testing System by Bridge Diagnostics, Inc., was 

used for this test. This system consists of up to 64 strain transducers that are applied to a 

bridge or other structure in a fraction of the time needed to apply standard foil strain gages. 

The strain transducers are place in position, and then they are fastened using a quick drying 

adhesive. All of the gages are then connected to the main data collection system, which the n 

produces the strain results by measuring the tiny displacements as a general resistance gauge 

would. Atypical BDI gage on the bottom flange of a girder is shown in Figure 3.33. 
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Figure 3.31. Photograph of the damage to Beam 1 in the Osceola bridge. 
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Figure 3.32. Photograph of the damage to the diaphragm in the Osceola bridge. 
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Figure 3.33. Close-up of BDI gage on the Osceola bridge. 

Sixteen BDI gages were used in the instrumentation. One gage was placed on the 

side of the top flange, and one on the bottom of the bottom flange for each of the eight 

beams. The gages were all placed 3 feet west of the existing bridge diaphragm, which 

allowed for the easiest gage placement while traffic was flowing under the bridge. The 

damaged area was located about 3 feet east of the diaphragm, in the center of the driving lane 

for I-35. Figure 3.35 shows the instrumentation cross-section for the testing. 

3.2.2.3. Trucks 

One standard DOT 3-axle dump truck filled with sand was used for this test. The 

center of gravity was assumed to be in the center of the two rear axles. The front axle 

weighted 13,120 lbs., the rear axles weighed a combined 34,340 lbs., for a total weight of 

47,460 lbs. Figure 3.34 shows the layout and dimensions of the truck. 

3.2.2.4. Procedure 

A total often rolling tests were performed for the testing of this bridge. The rolling 

tests consisted of a single truck driving about 5 to 8 mph. along a predetermined straight line. 

There were five different positions across the transverse direction, with two trials run for 

each position. These positions will be called 1-5 during the discussion, starting from the 
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Figure 3.34. Dimensions of truck used in Osceola bridge test. 

north. Across section of the bridge including the truck lanes is shown in Figure 3.35, and a 

gage schematic is shown in Figure 3.36. 

Before the test, the truck was fixed with the BDI auto-clicker that attached near the 

front left wheel. This device detects a reflective surface that marks every wheel revolution. 

Before every test, vice-grip pliers with a reflective surface connected would be attached to 

the front left wheel. The auto-clicker would then click every time the reflective surface 

would pass it, which allowed for easy determination of spacings and distances when looking 

at the final data plots. 

For each test, the truck was rolled into place right up to the edge of the first approach 

span. The reflective pliers were attached to the top of the wheel and the truck was backed up 

one complete wheel revolution, which was 10.8 ft. When the truck started moving, the data 

acquisition device was activated. 

Traffic was stopped before the bridge while the rolling tests were done. One person 

walked in front of the truck to ensure that it kept rolling in a straight line along the pre-

measured lanes, while another person walked alongside the truck to watch the auto-clicker 

and prevent any malfunctions. The rolling speed of the truck was approximately 8-10 mph. 

When the truck had exited the bridge, the gages were reset and traffic was allowed to go over 

the bridge again. Two identical trials were run back to back in each position before the truck 

was moved to a new lane. After all ten trials were completed, the gages were removed and 

the bridge was ready to be repaired. 
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Figure 3.3 6. Gage schematic of Osceola Bridge. 
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3.2.3. De Soto Bridge 

Bridge 3 has nine prestressed concrete beams and carries traffic west on Interstate 80 

over Highway 169 north and southbound near De Soto, Iowa. The bridge is a two-lane 

bridge, and includes two main spans and two approach spans. The first approach span is 34'-

9". Both main spans are 68' - 9", and the exit span is 39' - 0". The bridge accommodates two 

12'- 0" travel lanes as well as a wide shoulder on the driving lane side. An overall view of 

the bridge is shown in Figure 3.37, a schematic view is shown in Figure 3.38, and a cross 

section is shown in Figure 3.39. 

« :u~~.:~~.. 

~ - ~.. .~. 
"~~~~ ~. 

Figure 3.37. Overall view of De Soto Bridge looking southeast. 

3.2.3.1. Description of Damage 

The bridge incurred some damage due to an overheight vehicle traveling south on 

Highway 169. The vehicle missed the seven northernmost beams and struck the final two, 

Beams 8 and 9. Beam 9 sustained significant concrete loss and also lost a prestressing 

tendon. Two of the damaged areas are shown in Figure 3.40 and 3.41. Appendix B contains 

a more thorough report of the damage. 
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Figure 3.3 8. Dimensions of De Soto Bridge. 
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Figure 3.39. Cross section dimensions of De Soto Bridge. 

Figure 3.40. Photograph of severed prestressing strand on Beam 9 in the De Soto bridge. 

3.2.3.2. Instrumentation 

The BDI-STS, Structural Testing System by Bridge Diagnostics, Inc., was used for 

running this test. This system was also used for the Osceola bridge test and is described in 

section 3.2.2.2. Eighteen BDI gages were used in the instrumentation. One gage was placed 

on the side of the top flange, and one on the bottom of the bottom flange for each of the nine 

beams (see Figure 3.43). The gages were all placed 1 foot west of the existing bridge 

diaphragm. The damaged area was located about 3 feet west of the diaphragm, in the center 

of the driving lane for Highway 169. Figure 3.44 shows the gage schematic. 
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Figure 3.41. Photograph of severed prestressing strand in the De Soto bridge. 

3.2.3.2.1 Trucks 

One standard DOT 3-axle dump truck filled with sand was used for this test. The 

center of gravity was assumed to be in the center of the two rear axles. The front axle 

weighed 15,060 lbs. and the rear axles weighed a combined 34,1401bs., for a total weight of 

49,2001bs. Figure 3.42 shows the layout and dimensions of the truck. 
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Figure 3.42. Load truck dimensions from De Soto Bridge test. 

3.2.3.3. Procedure 

Six rolling tests were done for the testing of this bridge. The rolling tests consisted of 

a single truck driving about 8 mph. in each lane and along the left barrier of the bridge, called 
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Load Lanes 1 through 3. There were three different positions across the transverse direction, 

with two trials run for each position. The truck positions are shown in Figure 3.44. 

For each trial, the truck started back about one quarter mile. The driver would then 

maintain speed trying to avoid any bouncing of the truck. Traffic was only blocked along the 

lane in which the truck was driving, since traffic could not be stopped along the busy 

interstate highway. The gages started reading on a command based on visual position. 

When the truck was nearing the first approach, a radio call started the readings. When the 

truck had exited the last span, another called was used to stop the gages. When the truck had 

exited the bridge, the gages were reset. Two identical trials were run back to back in each 

position before the truck was moved to a new lane. After all six trials were completed, the 

gages were removed and the bridge was ready to be repaired. 
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Figure 3.44. Strain gage schematic for the De Soto Bridge. 
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4. REPAIR OF DAMAGED P/C LABORATORY AND FIELD BEAMS 

There are usually four main facets to a CFRP repair. The first facet is a mortar patch, 

which restores the original shape of the flange of the damaged beam. The second aspect is 

the longitudinal CFRP sheets, which restore some of the lost strength to the damaged beam. 
The third facet is very similar to the second and does the same job, but it consists of CFRP 

plates instead of sheets. The final facet of a repair j ob consists of a transverse CFRP wrap 

that helps to contain the mortar patch and slows flexural cracking. 

4.1. Patch 

The purpose of the mortar patch is to reform the original flange shape to allow for the 

installation of the CFRP. The CFRP requires smooth edges for proper adhesion. Usually a 

mortar good for overhead applications is chosen. The patch material selected for the repair 
of the laboratory beam was EMACO S88 CI. The patch material properties, as well as the 
CFRP system description can be found in Appendix 1. Similar materials were used for the 
field repairs. 

4.1.1. Patch Installation 

The installation procedure described comes from the patch installation in the 
laboratory. Field installation follows a similar procedure with slight variances in tools, 
standards, etc. The only major difference is that a beam in the field would be injected with 
epoxy prior to the patch being installed. This was done for the three bridges in the field. The 
rest of the patch installation is somewhat uniform. 

4.1.1.1. Formwork 

Wooden formwork was needed to reform the flange of the P/C beam. The three 
components of the formwork included pieces of 3/ 4 in. plywood, stiffened by 2x4 in. boards of 
similar length. One of the sections included a side form, which was also made of 3/ 4 in. 
plywood. Each of the plywood boards was a couple inches longer than the damaged area and 
was attached to the bottom flange using concrete screws in each corner. The holes for the 
concrete screws were measured and drilled beforehand with an electric hammer-drill. Form 
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Figure 4.1. Diagram of formwork used for patch installation. 

oil was lathered on the plywood before the mortar was set in place; Figure 4.1 shows a 

schematic of the formwork. 

4.1.1.2. Installation 

The patch procedure was discussed in the installation bulletin provided and was 
followed carefully to ensure proper strength and performance. Since all of the concrete was 
already chipped out, the patch installation began with the mixing of the mortar. One S S lb. 

bag of the EMACO S88 CI was mixed at a time and was mixed with 0.9 gallons of water as 

suggested by the manufacturer. The mortar was mixed in a clean S -gallon bucket, and an 

electric hammer-drill with a mixing bit was used to mix the mortar for 5 minutes. Another 
0.1 gallons of water was added while mixing to get the desired consistency. While the 

mortar was being mixed, the existing concrete was saturated with water to prevent it from 

drawing moisture from the mortar. The concrete was subsequently sprayed intermittently 

with water to keep it saturated throughout the patching process. 

Once the mortar was mixed thoroughly, the next step was to apply a bond coat to the 
existing concrete surface. A bond coat consisted of thoroughly scrubbing a thin layer of 
mortar into the saturated concrete surface with astiff-bristled brush. Once the bond coat was 

applied, the first of the three forms was attached. The mortar was then scooped out of the 
bucket with a hand trowel and was shoveled into place against the side form. Mortar was 

added until the area between the form and the bottom of the concrete was almost full. When 

no more mortar could fit, the second form was screwed into place. This process was 
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continued until all the forms were in place and could hold no more mortar. The hand trowel 
was used to smooth out the mortar at the open-ended area of the formwork into a suitable 
flange. Throughout the patching process, more mortar was mixed as needed. 

4.2. CFRP Sheet Installation 

The techniques for installing CFRP sheets in the lab are virtually the same as the 
techniques used on bridges in the field. The technique described is for the laboratory beam, 
but the process is the same for beams in the field, there are just more beams. A short 
description of the materials is provided in Appendix A along with the patch material 
properties. The design/application manual in the appendix also shows the field installation 
procedures. 

4.2.1. Longitudinal CFRP 

The patch was allowed to cure for two days before the formwork was removed and 
the MBrace system was installed. The patch was ground down with a hand grinder to match 
the exact shape of the flange. Sharp edges of the existing flange where also rounded off to 
increase the contacting surface in order to avoid air pockets. Once the patch and original 
concrete formed a continuous profile, the beam was ready to be prepared. Before the primer 
could be applied, the concrete surface was roughened. All of the concrete that was to come 
in contact with the epoxy was roughened using a hand grinder and concrete/masonry 
grinding wheel. A dust collection unit was used to minimize the dust on the beam, which 
would need to be wiped off anyway, and to prevent small particle inhalation by other 
laboratory workers. After the grinding was completed, the leftover dust was wiped off the 
beam with a damp rag. 

The carbon fiber strips were cut into their desired lengths after the beam had been 
cleaned. A scissors was used to cut the material. The carbon fiber was cut into 94 %2 and 44 
1/ 4 in. lengths, and the strips were also cut down from their nominal 20-in. width to a width of 
14 inches, which was 1 1/ 2 in. smaller than the bottom flange. The strips were covered with 
plastic to avoid getting dust on them. 

The primer consisted of a two-part epoxy and was mixed in a small plastic bucket 
according to the manufacturer's instructions. It was mixed in a 3/1 ratio with ahammer-drill 
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and mixing attachment. The primer was poured into a painting tray for ease of application. 

A clean, medium sized paint roller was used to apply the primer. A generous amount of 

primer was rolled onto the roller each time, but the roller was not overloaded because this 

could cause the primer to drip during overhead applications. The primer was applied 

somewhat quickly since it has a 20-minute working time at room temperature. Working 

quickly did not negatively affect the epoxy strength, since the entire area was thoroughly 

covered. 

After the primer was applied, the second step was to apply the putty. Since the test 

beam was new and had never been in the field, there was no reason to use the MBrace putty. 

The purpose of the putty is to fill bug holes and other small cracks. Had the putty been 

needed, it would have been applied directly over the wet primer. The putty was used on the 

damaged bridges though (see appendix). The test beam had virtually no cracks so this step 

was skipped in the laboratory and the next step was started immediately. 

The MBrace Saturant is also atwo-part epoxy and was mixed immediately after the 

primer was applied. It was mixed the same way as the primer, in a small bucket with a 

hammer-drill and mixing bit in the same 3/1 ratio. A single layer was applied using a clean 

paint roller. The working time of the saturant is 45 minutes at room temperature, so the 

saturant was also applied quite quickly while making sure the entire surface area was 

covered. The next step was to apply the carbon fiber sheets. 

The carbon fiber strips were set directly onto the wet saturant. The strips were laid 

starting at one end and moving toward the other end. A 6 in. overlap was used, although 

only a 2 in. overlap was required. The strips were pressed onto the saturant with gloved 

hands at first. After all of the carbon fiber strips were stuck in place, a ribbed roller was used 

to better work the carbon fibers into the saturant. The ribbed roller was rolled along the 

direction of the fibers to prevent any damage that could occur by rolling across them. After 

the final run with the ribbed roller, one more check was made to smooth out any wrinkles or 

air poc ets. 

Thirty minutes after the original carbon fiber layer was laid down, a second layer of 

saturant was spread over the existing carbon fiber. Another layer of carbon fiber strips was 

then laid down in the new tier of saturant in a similar fashion as the previous layer of strips. 
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The second layer of carbon fibers strips was staggered at half intervals from the first layer as 

shown in Figure 4.2. The A strips were 94 '/2 in. strips, and the B strips were 44 '/4 in. strips. 

The bridges in the field were repaired in the same fashion as the described beam. 

Variances only occurred in the lengths of the repaired beams, as well as the number of 

beams. The bridges also included the putty step while it was skipped in the laboratory. 
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Figure 4.2. CFRP splices. 

4.3. CFRP Plates 

CFRP plates were only attached to one beam, Beam 2, of the Altoona bridge, and 

none of the Osceola or De Soto beams. The CFRP plates used on the Altoona bridge were 

Sika CarboDur plates. Sika CarboDur is a pultruded (CFRP) laminate designed for 

strengthening concrete, timber and masonry structures. CarboDur is bonded onto the 

structure as external reinforcement using Sikadur 30 epoxy resin as the adhesive. The plates 

are very high strength, lightweight, non-corrosive, and relatively easy to install. They come 

in unlimited lengths and have a high modulus of elasticity. The design tensile strength is 406 

ksi. 

After the patch had cured, the plates were adhered to the bottom flange of Beam 2. 

The epoxy resin was applied using flat trowels to the entire length of the beam, while the fl-

inch plates were run through a tool that applied the resin to it. The 75 feet of plate was then 
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hoisted to the underside of the beam and stuck to it using gloved hands by two laborers, both 

on lifts. A rubber roller was run along the length of the plates to enhance the bond. The 

entire process was repeated three more times until the bottom of the flange had four plates 

covering it. The wraps were then installed according to the method described in section 4.4. 

4.4. CFRP Wrap 

A CFRP wrap was adhered to the center of the P/C beam to help contain the patch. 

The wrap extended 40 in. both ways from the center of the beam, which was the entire length 

of the patched area. Five strips were cut to cover this area; three were left their nominal 20 

in. wide, and two were cut down to 10 in. The sizes were chosen to avoid the wires from the 

prestressed strand gages that stuck out from the patch. All of the strips were approximately 6 

ft. long to allow them to cover the entire bottom flange and reach up to cover the entire web 

leaving only an inch from the bottom of the top flange. 

The longitudinal strips were allowed a day to cure before the wrap was added. The 

transverse strips were applied the same way that the longitudinal strips were. Primer was 

applied to the web and side of the bottom flange. The bottom of the flange already had the 

longitudinal strips so it did not need to be primed again. The entire area was covered with 

saturant and the strips were set in place. The ribbed roller was used to get rid of air pockets. 

Another layer of saturant was put on to finish the wrap. Figure 4.2 shows the layout and 

dimensions of the transverse wrap, and Figure 4.3 shows a cross section of the transverse 

wrap. 

1" w 

' ~ 20"~ ~ 2~0"~ 

1 /4" 1 /4" 

Prestressed Strand Wires 

Figure 4.3. Layout and dimensions of transverse wrap. 
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Figure 4.4. Cross-section of longitudinal and transverse wrap. 
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5. LABORATORY AND FIELD TEST RESULTS 

Results and analysis of the four tests performed during the course of this research are 

presented in the following section. One P/C beam was damaged, repaired, and tested in the 

laboratory, and three bridges that had been damaged were load tested in the field, one near 

Altoona, IA, one near Osceola, IA, and a third near De Soto, IA. The three bridges were 

subsequently repaired using CFRP; only the Altoona bridge was retested after the CFRP 

strengthening system was installed. All the repairs consisted of the application of concrete 

patches followed by the installation of CFRP, either plates and/or fabric. The results of these 

tests are presented in the following sections. 

5.1. Laboratory Beam 

The laboratory beam was damaged and repaired using CFRP as described in Chapter 

3. Two layers of longitudinal CFRP sheets, 30 ft long, were attached to the bottom flange of 

the beam with epoxy, followed by transverse wrap that was then wrapped around the bottom 

of the beam. The wrap extended from just under the top flange on one side of the web to just 

under the top flange of the other side of the web in the center portion (7.67 ft) of the beam. 

5.1.1. Service Tests 

Service tests were performed before and after the prestressing strands were cut as 

described in Chapter 3. Two tests were performed on the undamaged beam, followed by 

another after the concrete was removed and two prestressing strands were cut. As shown in 

Figure 5.1, a service load of 25 kips, which is lower than the cracking load for this beam, was 

applied. Data were taken at intervals of 1 kip. Once the concrete area was removed, it was 

difficult to get a good center deflection reading, thus the quarter point deflections are 

presented in Figure 5.1. The deflection increased slightly (0.002 in.) due to the cutting of the 

tendons and removal of the concrete. 

The stiffness of the undamaged beam (as determined using the secant modulus 
definition at the highest service load of 25 kips) was 107.1 kips/in. The damaged beam had a 
stiffness of 103.7 kips/in, which indicates a decrease of 3.1 %that can be attributed to the 

damage. The stiffnesses are smaller than those obtained for similar beams tested previously; 

this is due to the steel tubing that was used as supports for the simply supported beam. 
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Figure 5.1. Load vs quarter point deflection in laboratory beam during strand removal. 

During loading, the steel tubing deflected and this altered the deflections that were used to 

calculate the stiffnesses. The steel support deflections were measured during subsequent 

tests. Celescoes were later installed near the supports to measure support deflection so it 

could be subtracted from the mid-span and quarter point deflections. The final stiffness of 

the repaired beam (which includes the effects of the support deflections) with the patch and 

CFRP was 114.07 kips/in. 

5.1.2. Degradation 

The beam was cyclically loaded with a loading range of 2 to 58 kips at a rate of 0.7 

cycles per second. The maximum load (58 kips) was not high enough to crack the beam. 

(This load range was based on information from previous static load tests that was 

misinterpreted; thus, the load range was half of what was desired. Unfortunately this error 

was discovered after the cyclic loading was completed.) Cyclic loading was stopped and 

service tests were performed every third day after approximately 150,000 cycles. The test 

was terminated after 2.2 million cycles of loading. The centerline deflections from three of 

these service tests, approximately a million cycles apart, are shown in Figure 5.2. It was 
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Figure 5.2. Load vs. centerline deflection in laboratory beam after 0, 1, and 2 million cycles. 

clear that there was no degradation due to the cyclic loading, also there was no noticeable 

debonding of the CFRP due to the loading. 

5.1.3. Ultimate Test 

After completing the cyclic loading and the service tests, the beam was statically 

loaded to failure. The ultimate load test deflection results are presented in Figure 5.3; 

cracking of the beam occurred at approximately 44 kips. With increased loading, the CFRP 

sheets began to make popping noises at approximately 75 kips. The maximum load reached 

was 89.4 kips per actuator before a maj or drop in load occurred. Failure resulted when the 

CFRP and epoxy caused the concrete to delaminate. Concrete was attached to the CFRP 

after failure indicating that the epoxy bond was not the cause of the failure. 

The mid-span deflection just prior to failure was 3.61 inches. The total applied load 

of 178.8 kips was greater than the maximum load measured in previous tests of similar CFRP 

reinforced beams. A similar beam tested with the same longitudinal CFRP and a wrap only 

around the bottom flange of the beam, (not extending up the web), reached 167.2 kips before 

failure. Thus, the additional wrap length on the web more than likely increased the failure 

load. This repaired beam was more ductile than previously repaired beams as it reached a 

deflection of 3.61 in. before failure occurred. The largest deflection at failure for the 
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previous tests was approximately 3.0 in. As shown in Figure 5.4, the deflections were 

symmetrical about the centerline of the beam prior to failure, which reflects the symmetric 

loading conditions and symmetric behavior of the beam and repair system. 

100 

80 

.~ 60 

0 40 

20 

0  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Deflection (in.) 

Figure 5.3. Load vs. centerline deflection in laboratory ultimate load test. 
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Figure 5.4. Vertical displacements along the length of the laboratory beam. 
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5.1.3.1. Strains 

The strains in the longitudinal CFRP reached a maximum of 5,850 MII at the failure 

load, while the maximum strains measured in previous laboratory beam ultimate tests were 

5,300 MII or less. The full web wrap previously described prolonged the delamination, thus 

allowing the beam to reach higher loads. The design strain for the CFRP sheets as stated by 

the manufacturer was 16,700 MII. Obviously, with the CFRP only reaching 35% of its 

design tensile capacity, it was not the cause of failure. The longitudinal strains in the CFRP 

are shown in Figure 5.5. 
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Figure 5.5. Tensile strains along the CFRP sheets in laboratory beam. 

100 400 

The strains appear to be quite symmetric under the symmetric loading conditions, 

although at one of the quarter points, the increase in strain from the 80 kip load to the 89 kip 

load looks larger than the increase at the other quarter point. This strain increase could be an 

indicator of an eventual failure mode. The strains near the termination points of the CFRP 

were still quite low, 194 MII at failure, therefore, debonding near the end of the CFRP was 

not a cause of failure. 

Strain distribution through the depth of the composite beam is shown in Figures 5.6 

through 5.8, where the top of each graph is the top of the concrete deck. As seen in Figure 

5.6, the neutral axis location at the center of the beam was 7 in. below the top of the deck 
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during the final stages of loading, while the neutral axis location at the quarter points was 

approximately 15 in. from the deck top throughout the test. The extreme compression fiber 

of the concrete at the centerline of the beam reached a strain of 1,350 MII indicating that the 

concrete's full compressive strength had not been reached. 
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Figure 5.6. Strain distribution at centerline of laboratory beam. 
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Figure 5.7. Strain distribution at left quarter point of laboratory beam. 
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Figure 5.8. Strain distribution at right quarter point of laboratory beam. 

5.1.4. Summary of Beam Results 

Table 5.1 shows the moment values based on statics, using the ultimate load of 89.0 

kips to calculate the moments. Pl;,,e was the actual maximum load at each load point during 

the ultimate test. Mlive, the moment due to the live load was calculated from the maximum 

load (Plive) and added to the dead load moment (Maeaa), based on beam weight, to find Mn, the 

ultimate moment capacity. Table 5.2, which shows the predicted moment strengths, shows 

that the beam reached 98.3% of its expected capacity by reaching 1,455 ft-kips when it was 

predicted to reach 1,480 ft-kips. 

Table 5.1. Moment results from beam tests. 

Plive 
(kips) 

Mlive 
(ft-kips) 

Mdead 
(ft-kips) 

M„ 
(ft-kips) 

% of Undamaged 
Beam Strength 

Beam (2 Sheets &Jacket) 89.0 1,320 135 1,455 102.3% 

Table 5.2. Predicted nominal moment strengths. 

Beam Description Plive 
(kips) 

Mlive 
(ft-kips) 

Mdead 
(ft-kips) 

M„ 
(ft-kips) 

% of Undamaged 
Beam Strength 

Undamaged Beam 86.7 1,286 135 1,421 100.0% 
Damaged Beam 70.3 1,042 13 5 1,177 82.8% 
Strengthened Beam 90.7 1,345 135 1,480 104.2% 
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5.2. Altoona Bridge Test Results 

Two tests were performed on the damaged bridge over Highway 6 near Altoona. The 

first test (Fall, 2000) was conducted after an over-height vehicle had damaged the bridge. 

The second test (Spring, 2001) was performed after the damaged area had been repaired with 

a mortar patch, epoxy injections, carbon fiber plates, and a carbon fiber wrap described in 

Chapter 4. The tests consisted of a static portion, with 32 different load cases, and a dynamic 

portion. 

5.2. ~. Damaged Bridge Test 

The initial testing was performed weeks after the bridge had been damaged. No 

repair, retrofit, or epoxy injections had taken place prior to this testing. The results from 

these tests are compared to results of the following test, which was performed after the bridge 

had been repaired. 

5.2.1.1. ?'ransverse Behavior 

Figures 5.9 through 5.11 show strains and deflections at mid-span of the damaged 

bridge for Load Cases 13, 19, and 23 (see Table 3.4). Two loaded trucks were placed at 

various locations along the bridge to measure the strain and corresponding deflection in the 

beams prior to the CFRP repair. The trucks weighed a combined 102,200 lbs (see Table 3.3). 

The plots reference the static load cases shown in Table 3.4; these load cases were chosen 

because they caused the largest strains and deflections at mid-span from two truck loading. 

The data plots in all three cases show a nearly normal distribution of load among all the 

beams, except for jump or dip in strain visible on all three strain plots. Several factors were 

considered when trying to explain the behavior of the structure but no conclusion was finally 

settled upon. Initially a faulty strain gage was suspected, but an extra strain gage was placed 

near the existing gage on Beam 5 and it produced similar results, so the abnormal strain 

curve was left without a logical explanation. The bridge must have been distributing the load 

in an unusual fashion. 

A distribution factor (based on design assumptions) of 0.66 was calculated for the 

bridge using the 1996 AASHTO LFD Bridge Design Specification with one lane loaded. A 
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Figure S .9. Strain and deflection in the Altoona bridge for Load Case 13 . 
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Figure 5.10. Strain and deflection in the Altoona bridge for Load Case 19. 
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Figure 5.11. Strain and deflection in the Altoona bridge for Load Case 23. 
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value of 0.31 was computed in Beam 2 from the strain readings of the damaged bridge test, 

and a value of 0.27 was computed from the deflection data for the same beam. These values 

were taken from the results from Load Case 13, which caused the highest strains in Beam 2. 

The actual load distribution factor of the bridge was lower than the design distribution factor. 

The maximum strain Beam 2 reached was 49 MII which is much less than the 185 MII that 

was calculated using the AASHTO distribution factor, so it appears that the other beams 

could be assuming some of the load or that the distribution factor is quite conservative. 

5.2.1.2. Longitudinal Behavior 

Figure 5.12 through 5.14 show the strain at the center of span 2 as a function of truck 

position for a single truck placed at five locations along the length of the bridge, and when 

both trucks were side-by-side at the same five locations. By doing this, the behavior of the 

more heavily damaged girder can be compared with two girders that only incurred concrete 

damage. The five positions were the midpoint of span 1; '/a, 1/2, 3/4 points of span 2; and 

midpoint of span 3. For all three girders, the strains are either zero or negative when the 

truck was positioned in Span 1 or 3, showing some moment continuity in the girders. The 

strains were the largest in the most heavily damaged girder (Beam 2), reaching almost 50 

MII, but this can be attributed to the location of the wheel load, which was almost directly 

over Beam 2, and not the damage. 
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Figure 5.12. Strains in Beam 1 at the center of Span 2 in the Altoona Bridge. 
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Figure 5.13. Strains in Beam 2 at the center of Span 2 in the Altoona Bridge. 

.~ 

0 
.~ 

40 

30 

20 

10 

0 

-10 

~: ,f  ,.;t
~~ 

Shoulder 
Lane 

Lane 
Lanes 

--~ 
Drive 

`' ~ ,,`i
--~-- 

Passing —~-~ 
_.. ..... Both 

~;; ~ 

0 50 100 150 200 250 300 

Distance of truck from N end of bridge 

Figure 5.14. Strains in Beam 3 at the center of Span 2 in the Altoona Bridge. 

5.2.2. Comparison Plots 

After the second test was completed and the results were analyzed, a comparison was 

made between the data from each test to observe the changes in the behavior of the bridge 

due to the addition of CFRP. The plots for the transverse behavior were used for the 

comparison. After comparing the transverse data, it was determined that a comparison of the 

longitudinal behavior would be unnecessary. 
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5.2.2.1. Transverse Behavior 

Figures 5.15 through 5.17 show the strains and deflections for the damaged and 

repaired tests for the three load cases mentioned in section 5.2.1.1, Load Cases 13, 19, and 

23. Since the trucks used for the repaired bridge test weighed slightly less than the trucks 

used for the damaged bridge test, it was necessary to normalize the strain and deflection data. 

The normalization was based on the truck loads. For plotting comparisons, all the strains and 

deflections of the repaired bridge test were multiplied by 1.0942 to represent a 9.42% 

difference in total weight. 
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Figure 5.15. Strain and deflection comparison in the Altoona bridge for Load Case 13. 
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Figure 5.16. Strain and deflection comparison in the Altoona bridge for Load Case 19. 
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Figure 5.17. Strain and deflection comparison in the Altoona bridge for Load Case 23. 

As shown in figures 5.15 through 5.17, the deflection in some of the beams 

decreased by up to 20%, which could be due to the repair or the positioning of the load trucks 

during the testing. The strain distribution also appears to have changed slightly, although the 

unusual jumps and dips evident in the first test are still observed in the repaired bridge test. 

In all three strain plots, the repaired Beam 2 has slightly higher strains than in the damaged 

tests, while Beam 3 has slightly lower strains. The addition of the CFRP plates slightly 

increased the stiffness of the repaired beam causing it to attract more of the load than in the 

first test. The plates slightly increased the moment of inertia approximately 5%, but the 

decrease in strain due to this increase was only calculated to be approximately 1 %. The load 

factor computed from the strains of the bridge test was 0.32, and the load factor computed 

from the deflections was 0.27. The load factor computed from the strain increased with the 

addition of the CFRP, while the load factor computed from the deflection data stayed the 

same as the first test. 

5.3. Osceola Bridge Test Results 

The damaged bridge carrying IA Highway 34 over US 35 was tested in a series of 

rolling tests using a standard IA DOT tandem axle truck. Strains were measured using the 

BDI-STS system of gages described in Chapter 3. One strand on Beam 1 was completely 

severed, and this bridge was not retested after it was repaired. 
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5.3.1. Transverse Behavior 

Figures 5.18 through 5.20 show the transverse behavior during the loading for load 

lanes 1, 3, and 5; the two outside lanes and the center lane. The loaded truck traveled five 

different loading lanes for the test, making each pass twice. Using the auto-clicker of the 

BDI system, the center of the bridge could be found. The BDI gage on Beam 4 was giving 

consistently high strain readings about 1.75 times higher than it should, indicating that it may 

have been placed on a microscopic crack or there was a problem with the gage. Thus the 

readings from that gage were left off the plots. Both trials of each load position are shown on 

the plots to show the consistency. 

The strains in the extreme outside beams for the center load case, Load Lane 3, were 

quite small ranging from 3 to 7 MII. The damaged beam did not appear to exhibit any 

abnormal behavior, as it appeared to behave almost symmetrically to the beams on the 

opposite side of the bridge, which were undamaged. The strains in the beams at the center of 

the bridge only reached a maximum of 23 MII, and the highest measured strain in the bridge 

was 30 MII. This level of strain is extremely small for beams this large and is nothing that 

should cause any worry or indicate that the bridge is in any danger of failure. 
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Figure 5.18. Strain at midspan of the Osceola bridge for Load Lane 3. 
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Figure 5.19. Strain at midspan of the Osceola bridge for Load Lane 1. 
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Figure 5.20. Strain at midspan of the Osceola bridge for Load Lane 5. 

A distribution factor of 0.39 was calculated for this bridge using the 1996 AASHTO 

LFD Bridge Design Specification manual. A value of 0.28 was computed in Beam 1 from 

the strain readings of the damaged bridge test for the northernmost truck loading, which 

caused the largest strains in the damaged beam. The calculated factor is higher than the 

actual factor, which shows that the undamaged beams were assuming more of the load, or the 

distribution factor used by AASHTO is quite conservative. 

5.4. De Soto Bridge Test Results 

The damaged bridge carrying Interstate 80 over Highway 169 was tested in a series of 

rolling truck tests using a standard IA DOT tandem axle truck. The test was very similar to 

the Osceola bridge test, where again strains were measured using the BDI-STS system of 
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gages. One strand of Beam 9 was completely severed, and the bridge was not retested after 
it was repaired. 

5.4.1. Transverse Behavior 

Figures 5.21 through 5.23 show the transverse strain behavior of the nine beams 
during the loading for all three load positions. The loaded truck traveled three different 
loading paths for the test, making each pass twice. The load lanes included the center of the 
driving lane, the center of the passing lane, and the shoulder on the passing lane side. Beam 
9 was the damaged beam, which was on the south side under the passing lane shoulder. 

The highest strain recorded for any of the load cases was less than 50 MII, and were 
always located in the beam directly below the loaded lane. The highest strain in Beam 9 
when the trucks were in the normal traveling lanes, (driving and passing lanes), was less than 
12 MII. The damaged beam did not appear to have higher strains than would be expected on 
an undamaged bridge, since Beam 9 behaved similarly to Beam 1 for symmetric loading 

conditions. It can be concluded that the loss of only one strand out of nine beams is fairly 

insignificant for service loads. 

A distribution factor (based on design assumptions) of 0.44 was calculated for this 

bridge using the 1996 AASHTO LFD Bridge Design Specification manual. A value of 0.30 

was computed in Beam 9 from the strain readings of the bridge test for Load Lane 3, the left 

shoulder loading, which caused the largest strains in the damaged beam. 
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Figure 5.21. Strain at midspan in the De Soto bridge for Load Lane 1. 
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Figure 5.22. Strain at midspan in the De Soto bridge for Load Lane 2. 
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Figure 5.23. Strain at midspan in the De Soto bridge for Load Lane 3. 

5.4.2. Longitudinal Behavior 

Figure 5.24 shows three different beams from three different trials. The beams 
plotted were the beams most directly- beneath the left fire of the loaded truck. Beam 1 is 
plotted for the first shoulder run, S 1, Beam 3 is plotted for the first pass lane run, P 1, and 
Beam S is plotted for the first drive lane run, D 1. The j aggedness of the figure was due to the 
truck bouncing somewhat on the bridge during the trial runs. Notice that all three beams 
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achieve almost the same strain levels. The first beam had the highest strain, but it was on the 

outside where the strain distribution was not as good as the distribution is for the inside 

beams. This can also be seen in the transverse plots, Figure 5.23, where only half of the 

bridge is taking the shoulder truck load. 
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Figure 5.24. Strain at midspan of Beams 1, 3, and 5 in the De Soto bridge . 
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6. SUMMARY AND CONCLUSIONS 

6.1. Summary 

In this study, afull-sized P/C beam was damaged and three P/C field bridges that had 
been damaged and subsequently repaired with CFRP. The goal was to determine the effects 
of the repair/strengthening process on the structural behavior of the P/C beams. As part of 
the research, a literature review was also conducted to examine the recent findings from any 
similar testing. 

In the laboratory, afull-sized P/C beam was damaged to replicate impact damage 
from an overheight vehicle to a bridge. The beam was repaired using current CFRP 
technology and was subjected to cyclic service level loads to simulate bridge traffic. The 
beam was then statically tested to failure to observe the effects of the cyclic loading on the 
repair. Results were compared to previously collected data on three similar repaired beams 
that did not undergo the cyclic loading. 

From the many bridges in Iowa that have been struck by overheight vehicles, three 
were repaired as part of this investigation. The southbound I-65 bridge near Altoona, the 
westbound IA-34 bridge near Osceola, and the westbound I-80 bridge near De Soto all had 
significant concrete loss on one or more beams, as well as at least one severed prestressing 
strand. Repair strategies were developed so the moment capacity from the severed strands) 
could be restored by CFRP. CFRP also has the functional capacity of preventing the mortar 
patches from falling out onto the highways below. All three bridges were load tested using 
weighted DOT tandem axle trucks prior to repair. The Altoona bridge was also tested after 
the repair was complete to observe any differences in the bridge's behavior. 

Photographic and written documentation were taken during the repair of the IA-34 
bridge near Osceola. This documentation was used to create a CFRP application guide for 
aid in any future bridge repairs. A design aid was also put together using manufacturer's 
suggested design guidelines as well as input from other sources. These materials were 
assimilated to assist other engineers in the design of similar repairs. 
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6.2. Conclusions 

Carbon fiber repair methods are an effective method for repairing and strengthening 

damaged bridges. Due to the extremely high strength to weight ratio, the installation process 

is relatively quick and easy. Traffic control costs are lower due to the speed of the repair. 

Since the repair techniques are relatively new, the design/application guide developed will be 

very helpful when teaching the new techniques. This guide will also be helpful in the design 

of a given bridge repair. With continued usage and perfection of the design techniques 

involved, CFRP repair design time can be reduced thus increasing the cost effectiveness of 

the repair. The following conclusions can be drawn from this investigation: 

• Transverse CFRP jackets helped develop the longitudinal CFRP sheets and 

prevented debonding. More importantly, the jackets helped to confine the patch 

material under service or over-loads. This is especially important in the field where 

falling patch material from a repaired bridge can damage traveling vehicles and/or 

cause serious injuries to the traveling public. 

• CFRP can restore reduced moment capacity. While a steel jacket may contain 

patched concrete, it does not have the tensile strength of CFRP in restoring beam 

strength. 

• Distribution of loads among beams was always better than the AASHTO 

distribution factor predicted. The damaged beams carried a smaller percentage of 

the total load than predicted and were subjected to less stress than was predicted 

using the distribution factor. 

• Beam deflections were reduced in the bridge tests as much as 20%. The deflections 

decreased up to 0.02 in. for the most heavily loaded beams. Deflection decreases 

although slight, were noticed in several of the load tests on the Altoona Bridge. 

• Bridge closure following impact damage is probably unnecessary when only one or 

two strands in a P/C beam are damaged. The data from the bridge tests showed that 
the damaged bridges behaved like undamaged bridges when distributing load among 

the beams. 
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• The use of design aids including design templates for CFRP can reduce design 
times. 

• The excellent corrosive and fatigue properties of CFRP reduce future inspection and 
rehabilitation time. 
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7. FURTHER INVESTIGATION 

A number of issues were discussed during the course of this investigation including 

CFRP repairing/strengthening capabilities, bridge load distribution, and transverse jackets. 

Tests were performed on one P/C beam in the laboratory and three P/C bridges in the field. 

Several conclusions were drawn about the capabilities of CFRP for beam repair as well as 

load distribution characteristics of damaged bridges. Some issues seemed to need further 

investigation and are listed below. 

• Of the three bridges tested, the Altoona bridge incurred the most damage, which 

consisted of 5 severed strands. It was evident from the testing that this minor amount 

of damage did not seriously compromise the integrity of the bridge. It could have 

remained in service for quite some time with no noticeable effects. Further study is 

needed on bridges with extreme damage. To fully utilize the strength of CFRP, 

bridges with damage requiring replacement need to be tested to see if replacement 

can be avoided by utilizing CFRP. Of the three bridges tested for this investigation, 

the patch containment is probably the best benefit received. 

• Anchorage issues for CFRP should be investigated further. In the P/C beam ultimate 

test, the CFRP reached barely one third of its tensile capacity before delamination 

occurred resulting in failure. In order to maximize the effectiveness of CFRP, 

anchorage systems need to be developed that would prevent premature debonding and 

delamination, allowing the design strength of the CFRP to be neared. 

• Perhaps an in depth study of the reserve capacity of damaged beams should be done 

for aid in deciding on repair policies. Some repairs could possibly be cheapened or 

avoided simply by realizing the capacity that damaged beams have. If costly 

replacement or CFRP repair can be avoided, it should be investigated. 
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APPENDIX A 

DAMAGE REPORTS 
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ALTOONA 

Beam #1- At the impact point, concrete was spalled from the bottom flange for 
approximately 24 inches in the longitudinal direction, 7 inches in the vertical direction on the 
bottom flange west face, and 10 inches in the transverse direction. Approximately 2 1/ 2

inches of concrete was missing at the deepest point. One prestressing strand was severed and 
there was one exposed stirrup. There was no evidence of cracking in the beam. 

Beam #2- This was the most severely damaged beam. At the impact point, concrete 
was spalled from the bottom flange for approximately 48 inches in the longitudinal direction, 
the entire vertical face of the bottom flange and approximately 5 inches of the sloped west 
face, and transversely across the entire bottom of the bottom flange. Approximately 4 inches 
of concrete was missing at the deepest point. Five prestressing strands were exposed, and 
two more were severed. On the west face of the beam, one crack was located at the web and 
top flange interface and extended from approximately 8 ft. off of the face of the middle pier 
diaphragm to near the face of the centerline diaphragm. This crack was approximately 1 / 16th

to 3/32nd inches wide at its widest point. Another crack extended from the bottom flan e g 
near the middle pier diaphragm, diagonally across the web, and met the top crack at 
approximately 23 ft. from the pier diaphragm. Four cracks extended diagonally across the 
bottom of the bottom flange and diagonally across the face of the bottom flange and along 
the web and bottom flange interface. These cracks were located at approximately 1 S, 18, 21, 
and 25 ft north of the centerline of the impact area. Sounding of the web in this area with a 
hammer produced a slightly different ring, indicating possible hollow areas. There were 
several other longitudinal cracks on the web of the west face. On the east face of the beam, 
one crack was located at the web and top flange interface and extended from the face of the 
centerline diaphragm t0 within 9 ft of the face of the middle diaphragm. There were a couple 
of other longitudinal cracks on the web of the east face. 
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Figure A24. Altoona beam #2 damage drawings. 

...................   ~. 
 ... 

 -. ~ 

.s 

Beam #3- At the impact point, concrete was spalled from the bottom flange for 

approximately 26 inches in the longitudinal direction, 7 inches in the vertical direction on the 

bottom flange west face, and 10 inches in the transverse direction. Approximately 2 1/2

inches of concrete was missing at the deepest point. One prestressing strand was severed and 

there was one exposed stirrup. On the west face of the beam a crack was located at the web 

and top flange interface and extended approximately 10 ft from the centerline of the collision 

area toward the middle pier. 

Beam #4- At the impact point, concrete was spalled from the bottom flange for 

approximately 18 inches in the longitudinal direction, 6 inches in the vertical direction on the 

bottom flange west face, and 9 inches in the transverse direction. Approximately 2 inches of 

concrete was missing at the deepest point. One prestressing strand was partially exposed and 

it appeared gouged. There was no evidence of cracking in this beam. 

Beam #S-At the impact point, concrete was spalled from the bottom flange for 

approximately 32 inches in the longitudinal direction, 6 inches in the vertical direction on the 
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bottom flange west face, and 10 inches in the transverse direction. Approximately 2 1/2

inches of concrete was missing at the deepest point. One prestressing strand was severed. 

There was a crack on both sides of the beam at the web and top flange interface that extended 
from approximately 10 ft. off of the middle pier diaphragm face to about S ft past the 

centerline of the impact point. 
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Figure A25. Altoona beam #5 damage drawing. 

Beam #6-At the impact point, concrete was spalled from the bottom flange for 
approximately 45 inches in the longitudinal direction, 6 inches in the vertical direction on the 
bottom flange west face, and 10 inches in the transverse direction. Approximately 2 inches 
of concrete was missing at the deepest point. One prestressing strand was exposed and 
partially severed, and there were two exposed stirrups. There was also a crack starting at 
about 5 ft from the impact point, intersecting the top crack, and extending diagonally to the 
interface of the web and bottom flange at the centerline diaphragm. 
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Figure A26. Altoona beam #6 damage drawing. 

OSCEOLA 

Beam #1- This beam was the most severely damaged of the two beams. Two strands 

were severed in the bottom layer of strands. There was a large hollow area in the bottom 

flange at the impact zone. A portion of the hollow area appeared to be cracked completely 

through from the top most edge to the bottom edge. This area was most likely being held in 

place by the strand that was running through it. The web was cracked along the top flange 

interface, on both sides of the beam, for a distance of approximately 25 ft over the impact 

zone. There was a hairline crack at the beam and diaphragm interface with a span in the 

bottom of the diaphragm exposing the coil ties that connected the bottom flange to the 

diaphragm. On the north exterior face of the beam there was horizontal hairline cracking in 

the web at the impact zone. There was a diagonal crack staring in the bottom flange 12 ft

from the east bearing, extending back towards the east bearing and stopping near the center 

of the web. The diagonal crack did not appear on the interior face of the beam. 

Beam #2- Beam #2 had some minor spalls on the bottom flange and a large span on 

the north side of the bottom flange. The large span was approximately 2 112 inches deep, 

partially exposing 2 to 3 strands and reinforcing steel. No cracking in the web was seen. 

Other spalls were 3/4 to 1 inch deep with no reinforcing exposed. A drawing from the damage 

report is shown in Figure A27. 
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Figure A27. Osceola damaged beam drawing. 
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DE SOTO 

Beam #1- This beam was the only beam to sustain major damage. A southbound 

vehicle struck the southernmost beam but virtually missed the other beams before it. The 

bottom strand on the north side of the beam was completely severed and another strand was 

almost totally visible. Three strands were also visible on the south side where concrete had 

broken away. There were several cracks along the bottom of the beam propagating from the 

impact zone. There was also a 1/8 inch crack that extended for several feet just below the top 

flange that was visible on both sides of the beam. A page from the damage report is shown 

in Figure A28. 
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Figure A28. De Soto damaged beam drawing. 
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APPENDIX B 

DESIGN/APPLICATION GUIDE 
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Design for Fiber Reinforced Plastic repair to a 
Prestressed Concrete Beam 

Designing a CFRP repair system for a damaged prestressed beam can be 
somewhat confusing if the designer is not familiar with the design procedure 
This guide is intended to aid in the design process and will provide some 
step-by-step instructions as well as examples of previous designs. 

1) Design is based on the Master Builders product CF 130 High Tensile Carbon 

2) All highlighted values need to be entered manually kip := 1000•lbf 
ksi .= l000•psi 

STEP 1: List all values needed for analysis of prestressed beam. 
. 2 

Area of beam. ~ :_ ®•ln 

Height of beam. H :_ ®•in 

Area of prestressing steel. A — ®•iri ps •—

Prestressing steel strength. 

Distance from top of concrete that is in 
compression to centroid of prestressing steel in 
composite section. 

Distance from centroid of beam to bottom of 
non-composite section. 

Slab thickness. 

Gross beam moment of inertia. 

Slab concrete strength. 

Beam concrete strength. 

fu ._ ®•psi 

d .='•in 

Yb ._ ®•in 

is ._ ®•in 

Ig ._ ®•in 

fc ._ ®•psi 

fcbeam ~_ ®•psi 

Distance from bottom to centroid of Y ®•in s ~_ 
prestressing strands . 

Moment on beam when FRP is installed. initial ~_ ®•ft•kip 
(100% Dead Load + 25% Live Load) 

Effective prestress force when FRP is installed. Pe :_ ®•lbf 

Modulus of elasticity of prestressing strand. ! •ksi F,p :_ 

Effective slab width. b :_ ®•in 
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Transformed section modulus for the bottom of the 
beam only. 

Section modulus for the composite beam and slab 
at the bottom of the beam, with the slab concrete 
transformed to equivalent beam concrete. 
(Eslab /Ebeam 
Section modulus for the composite beam and 
slab at the bottom of the beam, with the slab 
concrete transformed to equivalent beam 
concrete for long term loading. (E slab/Ebeam )/3 

Section modulus for the composite beam and slab 
at the top of the beam, with the slab concrete 
transformed to equivalent beam concrete. 
(Eslab /Ebeam 

Section modulus for the composite beam and slab 
at the top of the beam, with the slab concrete 
transformed to equivalent beam concrete for long 
term loading. (Esiab/Ebeam ~ 

Transformed section modulus for the top of the 
beam only. 

FRP Material Properties 

Thickness of fiber sheet 

Design strength 

Design strain 

Tensile Modulus 

3 
Sbeam •_ •in 

Sn ._ •iri 

San ._ ®-iri 

. 3 
Sn top :_ •ln 

3 
S3n_top •= t •in 

Stop ._ ®•in 

tf ._ ®•in 

f~ ._ •psi 
in 

sfu .=®—
in 

E f ._ ®•psi 

STEP 2: Determine the existing flexural capacity based on original 
section properties and determine the loss of capacity due to damage. 

Determine Ultimate Moment capacity of beam before damage/deterioration using 
section properties. 

MUoriginal •_ ®ft•kip 

Determine Ultimate Moment capacity of beam after damage/deterioration. 

Muexisting •_ ~ ft•kip 

Calculate loss in capacity : 

Mloss ~= Muoriginal — Mt~xisting ~'~lloss = ~ ft•kip 
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STEP 3: Using the M loss ,estimate the number of sheets of FRP that will 
be needed based on the additional tensile force required to restore the 
original moment strength. 

Tension to be recovered = T 

Mloss 
T :—

o.9•d 

Area of FRP needed: 

T 
Af ._ 

0.9.0.85•ffu 

Nominal sheet width is 24 inches. The FRP is easy to cut into smaller 
widths such as 3, 4, 6, 8, or 12 inches. 

Width of FRP sheet to be used: 

WFRP ,_ ®•in 

Calculate the number of layers needed: 

Layers required = n p

Af 
np : _ 

WFRP 'tf 

n= ~ 

n := ceill > 

Area of FRP to be used = A FRP 

AFRP := n•tf•~~`F€~1' 

STEP 4: Calculate the flexural capacity with the FRP. This is the 
beginning of the iteration process. Start by assuming an initial C value, 
which is the distance from the extreme compression fiber to neutral axis. 
An uncracked section is assumed. 

Trial &Error Method 

Initial "C" can be taken as 0.15(d) 

For the initial iteration let C = C initial , adjust C for subsequent 
iterations. 

Cinitial ~= 0.15•d initial = ~ C = ®• in 
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STEP 5: Determine the failure mode by reviewing the existing state of 
strain in the concrete Since FRP is usually installed unstressed, and the 
concrete surface to which it is attached is stressed from self-weight and 
prestressing, the strains will be different. In order to use strain 
compatibility, the existing state of strain in the concrete must be calculates 
This initial strain can then be added to the ultimate strain and used as 
shown below. As stated before, an untracked section is assumed. 

Eby = Strain in concrete substrate at time of FRP installation. 

~fu =Ultimate strain of the FRP material. (given on page 1) 

If ~fu + £bi ` ~cu(H + is - C)/C, Failure is controlled by concrete crushing. 

If Efu + Ebi ' £cu(H + is - C)/C, Failure is controlled by FRP rupture. 

Maximum usable compressive strain in the concrete = Ecu 

£ cu ~= 0.003 

E total ~ — E cu 
(H+~-c) 

c 
Ec =Approximate elastic modulus of concrete in compression (psi). 

E •_ c• 

E '—bi •-

57•~~ 
0.5 

cbean~  . 
•ksl 

1 S 
0.5 .p

MinitiatYb Pe 

Ig'Ec Ac'Fc 
~ + 

~Yb — YS~ •yb -

Ig

Ac

Controlling_Factor= i E total ~ £ fu + ~ bi , "Concrete crushing" , "FRP rupture" 

Controlling_Facto~= ~ 

Note: It is recommended that the design be altered if concrete 
crushing is the failure mode. Reduce the number of FRP layers or 
reduce the width of the strips used. If the controlling factor cannot be 
changed, proceed with Step 6A; if the controlling factor is FRP 
rupture, proceed with Step 6 B . 
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Step 6A: When failure is governed byconcrete crushing, the strain in the 
concrete at failure will be at its maximum usable strain£cu• 

EC '— E CU 

The strain in the FRP may be determined by finding the strain in the 
concrete substrate at ultimate and subtracting the strain in the concrete 
substrate at the time of FRP installation. 

~H + is — C~ 
._ 

f •— c' C — ~ bi obi =Strain in concrete substrate at time 
of FRP installation. 

Because the concrete is at its maximum usable strain level, the 
rectangular stress block specified in ACI 318 may be used to aproximate 
the actual non-linear stress distribution in the concrete. 
The FRP sheet may be taken as linear-elastic to failure. 

ff := Ef•~ f` 

The estimated value of C is then checked against the value obtained, c, 
to satisfy equilibirum of the internal stress resultants. 

AFRP • ff + Aps • fu . c : = c = ~ in C = ~ in 
o.ss•f~•o.ss•b 

Repeat Step 4 through Step 6 by adjusting C in Step 4 until C=c, 
then proceed to Step 10. 

Step 6B: When the failure mode is controlled byFRP rupture, the 
calculation procedure used to compute the nominal moment capacity of a 
section is similar to that used when there is concrete crushing. In this 
case, the known value of strain in the FRP may be used in conjunction 
with the estimated neutral axis location to determine the strain level in 
each of the materials. 
Calculate the concrete strain,E~, and the strain in the FRP,Ef.

l  C 
Ec •_ ~Efu + £bil~H+ is — C 

Ef ~— Efu 

Therefore the stress in the FRP = #. 
ff := ffi, if s f •Ef > ffu 

(s f•Ef~ otherwise 
ff = ~ ksi 
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Step 7: Determine stress block parameters. 
Because the concrete does not reach its ultimate compressive strain in 
Step 6B, the Whitney stress block is not applicable. The stress 
resultant for concrete should be determined from an appropriate 
non-linear stress-strain relationship or by a rectangular stress block 
suitable for the particular level of strain in the concrete. Parameters for 
the stress block are given below. 

Ebeam ~_ 
57•f -. 0.5 57•~ .5 

c.-beam c • 
•ksi Eslab ~_  •ksi 

s 
0.5 1 

s 
0.5 

p 'p 

Eslab 
ntransformed =_ 

~bea~n 

t.~t•f~ 
s p~ :=   E n :_ 

Fslab 

~~„ - atan~s n~~ 

sn•ln(1 + 
En21 - 

y •_ 
t'En 

Step 8: Determine the strain in the prestressing strands. Total strain 
in the prestressing strands is due to strains at three load stages. Load 
stage 1 is the prestress alone, stage 2 is the decompression of the 
concrete, and stage 3 is the ultimate load. Total strain =E~ + E2 + E3

0.90•ln(1 + E n21

E C 

E~ =Strain in the tendons due to the initial application of the prestress force 
and any subsequent losses that occur. 

Pe 
E 1 :_  Aps •Ep

E2 =Strain in the tendons due to decompression of the concrete at the level of 
the tendons. 

Pe 
E2 :_  

Ac ' Ec 
1+ 

~Yb - YS~2
Ig

Ac 
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E3 =Strain in the tendons due to ultimate loading. 

~H+ts —YS —C~ —

E3 ~ Ef  H+t s —C 

~H+ts —YS —C~ 
s~•~ C l

s ps := E 1 + s 2 + s 3 s p := s ps if s ps < 0.03 

0.03 otherwise 
Step 9: Calculate the stress in prestressing strands so that c may 
be calculated. 

f •_ ps • E p •Ep if E p < 0.008 

1 E total ~ E fu + E bi 

otherwise 

otherwise 
~s•psl ~ 

fu — — 2000•psi 
~ ~ E p — 0.0065 ) ~ 

~ 58 •psi ~ 
fu — — 2000 •psi otherwise 

~ ~ E p — 0.006 ~ ~ 

Force in FRP sheets 

TFRP : = AFRP . t~. 

Force in strands 

Tps := Aps '~~s 
Estimate of neutral axis location 

:_ Tps + TFx~ 
y•f~•(3 1•b 

if fu = 2~0000•psi 

c = ~ In C = ~ in 

FRP rupture 

Concrete crushing 

Re-iterate until c = C by changing C in Step 4. Then proceed to Step 10. 

Step 10: Compute the nominal capacity of the beam. 
Assuming R~*C < t s 

~i 1 • C = ~ in is = ~ in 

Mn := Tps • H + is — 

:= 0.9 

~= ~ `fin • 

R 1 •~ 
YS — 2 ~~ + TFRP 

Ri• C 
x+ts — 

2 ~ 
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Step 11: Check all allowable stresses that haven't been checked 
already. 

MLL I ~_ ~ 'ft'-kip NtDL ~_ ~'~'~~ MDL2 ~_ ~'~'~~ 

M LL I =live load with impact 

M DL1 =dead load on the non composite section 

MDL2 =superimposed dead load on the composite section 

favailable is the available stress capacity for live load. 

Pe Pe'~Yb — Ys~ 
favailable ~_ — + 

Ac S beam 

MLL I 
fLLI ~=  

~n 

MDL 1 MDL2 

S beam ~ 3n 

Calculate favailable 'fLL l ~ If this stress is negative this is the stress to be 
carried by the FRP. 

check 1 :_ "stress carried by FRP" if favailable — f.~,L I < 0 

"stress carried by tendons" otherwise 

check t = ~ 

fcarriedbyFRP ~_ — favailable — ~LL_I -~arri edbv FR.P 
W 

Allowable stress for FRP 

fFRp := 0.33.0.95.0.65•~~ 

fFFZF = ~ ksi 

fFRp must be higher than the stress to be carried by the FRP 

check . — • 2 '— "Good" 1 fFRP > >arriedbvFR:P 
W 

"No good" otherwise 

checks _ ~ 

_ ~ ksi 
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Allowable concrete compressive stresses: 

f  ._ —Pe + pe~~Yb —1's~ MDL1 MDL2 
1 

Ac Stop Stop S3n_top 

MLL I 
+ 0.6•fcbeam 

Sn_top 

—Pe pe'~Yb — Ys~ ~  MDL1 MDL2  ~ MLL I 
f2 :_ + — 0.5• + — — + 0.4•f~,beain 

Ac Stop `Stop S3n_top ~ Sn_top 

—Pe Pe'~Yb — Ys~ MDL1 MDL2 

Ac Stop stop S3n_top 

It fl, f2, and f3 are positive, compression in concrete is O.K. 

check3 :_ "Good" if fl > o 

"Good" if f2 > o 

"Good" if f; > 0 

"No good" otherwise 

check3 = ~ 

f1 = ~ ksi f~ _ ~ ksi 

Allowable stress in prestressing steel 

allowable ~ = ml 0.74 • f~~ , 0.82.0.85 • fu

Final stress in strands 

P final ~ _ 

f~ _ ~ ksi 

Stress Relieved Strand 

MLL_I MDL 1 MDL2 0.5 .0.5 + + — 6•fcbeam •psl 
Sn Sbeam San 

1 Yb — ~s 

Ac Sbeam 
P final

ffinal ~= ffinal must be less than fa,llowable 
fps 

ff nal = ~ ksi fallowable = ~ ksi 

checkq. :_ "Good" if ffinal < fallov~Jable 

"No good" otherwise 

checks _ ~ 
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Step 12: Determine development length of the FRP according to 
manufacturer's recommendations 

~df •_ 
ffu •tf•n 

3 ' ~c f n~ 
0.5 • si0.5 

bea p 

Find location where M =Mcr along the beam 

Length . = , ~ ft ~ cr : = ®• ft• kip 

Muoriginal k :_ 
I.,e~~gth 2
2 ) 

~ Mcr ~ 0.5 
x ;= x =distance from centerline of beam to 

~ k / location where M =Mcr 

Length of FRP required 

L := 2•~x+ lused~ 

If more than one ply is used, extend each underlying sheet 6 inches 
on each end. 
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CFRP APPLICATION PROCEDURES 

The following is a guide designed to aid in the application of CFRP. The pictures 

shown are from a bridge beam, but similar steps are followed for any other sort of 

repair/retrofit. Mbrace CFRP materials were used in this repair, thus any differences in 

manufacturer's materials could warrant adjustments of this procedure. The five aspects of 

CFRP application include: primer, putty, saturant, carbon fiber sheets/plates, and top coat. 

Concrete Repair 

Step 1: Repair concrete using mortar and epoxy injections according to current standards 

available. Forms must be used to maintain the original shape of the beam. Figures 

A 1 and A2 show formwork and a completed patch. 

Step 2: Grind off edges to a minimum of 1 /2 inch for better bonding action. 

Figure Al. Formwork example. Figure A2. Cured Patch. 

CFRP Installation 

Application of primer: 

Step 1: Clean off surface using high-pressure air or a damp cloth. Remove all dust. 

Step 2: Weigh appropriate amounts of primer to be mixed, 3 parts A and 1 part B (may be 
different for other manufacturers). Measure only what is needed since primer has 
only a 35-minute pot life and will harden soon after mixing. A complete batch of 
primer covers 150-200 sq ft/gal. Figure A3 shows the weighing of the components. 

Step 3: Mix for 3 minutes using ahammer-drill and mixing bit, shown in Figure A4. 
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Step 4: Pour primer into a paint tray and roll on with a medium nap roller. This can actually 

be completed quite quickly as long as the entire surface gets covered well. Figures 

AS and A6 show the application of the primer. 

Figure A3. Weighing of the primer 
components. 

Figure A5. Applying primer with nap 
roller. 

Figure A4. Mixing of the primer 
components with mixing drill bit. 

Figure A6. Another view of primer 
application. 

Application of putty: 

The putty is used to plug bug holes and other small cracks for a better bond. 

Step 1: Measure desired amount of both putty components with a scale. 

Step 2: Premix white component for 3 minutes. Mix with other component for 3 more 

minutes, similar to the primer. Figures A7 and A8 show the mixing. 
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Step 3: Generously smear putty onto wet primer using an ordinary hand trowel. Press into 

any small holes that may exist. Coverage for the putty on smooth surfaces is 24 sq 

ft/gal and for rough surfaces about 12 sq ft/gal. Figure A9 and A 10 show the putty 

application. 

Figure A7. Putty mixture. 

Figure A9. Applying putty with hand 
trowel. 

Figure A8. Mixing of the two 
components. 

Figure A10. View with putty step 
completed. 

Application of Saturant: 

The saturant impregnates the dry fibers and holds the CFRP in place while the epoxy cures. 

Step 1: Weigh desired amount of saturant components. Pot life for the saturant is 30 minutes 

and coverage is 110-130 sq ft/gal. 



www.manaraa.com

105 

Step 2: Premix the blue component for 3 minutes. Mix another 3 minutes while the colorless 
component is slowly added as shown in Figure A 11. 

Step3: Roll the saturant directly on the wet putty with a clean nap roller. The roller 
should be soaked with saturant, which allows for easier application. This step should go 
fairly quickly as long the entire surface gets covered with saturant. Figures Al2 and A13 

show application of the saturant. 

Figure A11. Mixing the blue and 
color-less component of the saturant 
layer. 

Figure A13. Applying saturant. 

Figure Al2. Beginning the 
application of saturant layer with nap 
roller. 
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Application of carbon fiber: 

Step 1: Determine the size of carbon fiber sheets required and cut to length using a utility 

knife and a straight edge, shown in Figure A 14. Ideal length is between 6 and 10 ft. 

Step 2: Roll precut strips for ease in application. A rolled up strip is shown in Figure A 16. 

Step 3: Begin unrolling longitudinal carbon fiber onto the wet saturant. Press along the 

length of the material with gloved hands. Use a ribbed roller to remove air pockets 

and impregnate the fibers with saturant. An installed longitudinal strip is shown in 

Figure A 15. 

Step 4: Continue applying all of the longitudinal strips. A 4 in. overlap is recommended 

when starting the next strip. A thin strip of saturant should be applied to the last 4 

in. of the previous strip so the next one will stick to it. 

Step 5: One half hour after the carbon fiber strips have been applied, spread a 2nd layer of 

saturant over the existing carbon fiber strips. 

Step 6: If applicable, apply a 2nd layer of carbon fiber strips in the new layer of saturant. If 

another layer is not needed, the 2nd layer of saturant should be left to dry. 

Step 7: Repeat steps 5 and 6 for the desired number of layers. 

Step 8: Apply transverse wrap in similar fashion. No overlap of the transverse FRP is 

required. 

Figure A14. Cutting FRP to the 
predetermined size. 

Figure A15. One strip of longitudinal 
FRP. 
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Figure A16. Unrolling a strip of FRP. Figure A17. Four inch overlap splice. 

Figure A18. Transverse wrap over the Figure A19. Transverse wrap (cut to 
longitudinal FRP. 

Figure A20. Entire beam after the 
longitudinal and transverse FRP are 
installed. 

designed length). 
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Application of topcoat: 

The topcoat is similar to a final layer of paint. It is applied mainly for aesthetic purposes so 

the repair is not noticeable while driving past the structure. 

Step 1: Weigh components of topcoat, a 4:1 ratio. Pot life of the topcoat is 3 hours. 

Coverage is 350 sq ft/gal. 

Step 2: Mix using hammer-drill and mixing bit for 5 minutes. 

Step 3: Apply over the dried saturant and FRP using rollers and brushes. Figures A21 

through A23 show the painting of the topcoat and the complete repaired structure. 

Figure A21. The painting of the 
topcoat. 

Figure A23. Final view of completely 
repaired bridge. 

Figure A22. Using a roller to paint 
bottom flange. 
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APPENDIX C 

REPAIR MATERIAL PROPERTIES AND DESCRIPTIONS 
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EMACO S88 CI, manufactured by Master Builders Technologies, is a sprayable 

fiber-reinforced structural repair mortar with integral corrosion inhibitor. For this project, it 

was not applied using the spraying method. It is especially made for repairing vertical and 

overhead concrete and masonry (vertical repairs from 3/8 in. to 2 in. and overhead repairs 

from 3/8 in. to 1-1 /2 in.). Other uses include repairs on bridges, parking ramps, repairing 

manholes, sewers, wet wells, and lift stations. 

Some special characteristics of the EMACO S88 CI follow: it is easy to use, there is 

no additional bonding agent required, and it is sprayable with low waste. It also has a silica 

fume formulation, which contributes to a high early and ultimate compressive, flexural, and 
bond strengths. Some of the manufacturer's material properties are presented in Table A.1. 

Table A.1. Manufacturer's properties. 

Test Description 1 Day (psi) 7 Days (psi) 28 Days (psi) 
Direct Tensile Bond Strength 

(ACI 503R, Appendix A) 
100 175 300 

Direct Shear Bond Strength 
(Michigan DOT) 

350 450 700 

Modulus of Elasticity 
(ASTM C 469) 

- - 5,000,000 

Splitting Tensile Strength 
(ASTM C 496) 

350 500 900 

Flexural Strength 
(ASTM C 348) 

650 1,000 1,300 

Compressive Strength 
(ASTM C 109 

3,500 8,000 11,000 

CFRP Strengthening System 

The carbon fiber strengthening system used in this project was the MBrace 

Composite Strengthening System, manufactured by Master Builders Inc. of Cleveland, Ohio. 
The MBrace system involves the use of epoxy to adhere carbon fiber sheets to concrete 
and/or steel surfaces. This adhesion increases the strength. The system can be used for 

things such as bridge repair, column wraps, shear reinforcement, and beam column 
connections. The Mbrace system consists of five main components. These components, in 

order of application, are as follows: Primer, Putty, Saturant, CFRP, and Topcoat. 
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Primer: 

The MBrace primer is a 100% solids epoxy based primer. The primer is formulated 

to penetrate the pores of the concrete to provide an adequate bond between the carbon fibers 

and the concrete. The primer is almost colorless when applied. It is applied with amedium-

sized paint roller. 

Putty 

The putty epoxy step is an optional step, depending on the condition of the concrete 
surface. The MBrace putty is a thicker epoxy than the primer. It is used to fill bug holes and 
small cracks in the concrete. This will create a better bond between the concrete and the 
carbon fibers. If needed, the putty can be used for leveling the concrete or for filling small 
holes. The putty is applied with a standard hand trowel and appears as a light color. It is 
applied directly over the wet primer. 

Saturant 

The MBrace Saturant is the third step in the strengthening process. The saturant is a 
blue color. This makes it distinguishable against either the primer or the putty so no areas are 
left unsaturated. The saturant is used to impregnate the dry fibers. It holds the dry fibers in 
place while the system cures. The saturant is also designed to protect the carbon fibers from 

the environment. It is also quite viscous for easy applications in overhead situations. 

Carbon Fiber 

Immediately after the saturant has been applied, the pre-cut carbon fiber strips are laid 
directly on the wet saturant. The carbon fiber is what gives the MBrace system its strength 
and consists of high strength unidirectional fibers together in one sheet. The carbon fiber's 
main feature is that it has high strength to weight and stiffness to weight ratios. This allows 
repairs to be made with out significantly altering the properties of the original structure. 
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Top Coat 

The MBrace Top Coat is the final step in the repair process. The topcoat is "painted" 
on after all layers of carbon fiber and saturant have been applied. The topcoat can protect the 

epoxy and fibers from UV rays and chemical backsplash. It is mostly used for aesthetic 

purposes though and should come close to matching the concrete in the existing structure. 
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